Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(50): 27657-27663, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38019965

RESUMEN

The electroreduction of CO2 plays an important role in achieving a net-zero carbon economy. Imidazolium cations can be used to enhance the rate of CO2 reduction reactions, but the origin of this promotion remains poorly understood. In this work, we show that in the presence of 1-ethyl-3-methylimidazolium (EMIM+), CO2 reduction on Ag electrodes occurs with an apparent activation energy near zero, while the applied potential influences the rate through the pre-exponential factor. Our findings suggest that the CO2 reduction rate is controlled by the initial state entropy, which depends on the applied potential through the organization of cations at the electrochemical interface. Further characterization shows that the C2-proton of EMIM+ is consumed during the reaction, leading to the collapse of the cation organization and a decrease in the catalytic performance. Our results have important implications for understanding the effect of potential on reaction rates, as they indicate that the common picture based on vibrational activation of electron transfer reactions is insufficient for describing the impact of potential in complex systems, such as CO2 reduction in the presence of imidazolium cations.

2.
Adv Mater ; 35(17): e2210749, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739656

RESUMEN

The crystallization of nanocrystal building blocks into artificial superlattices has emerged as an efficient approach for tailoring the nanoscale properties and functionalities of novel devices. To date, ordered arrays of colloidal metal halide nanocrystals have mainly been achieved by using post-synthetic strategies. Here, a rapid and direct liquid-phase synthesis is presented to achieve a highly robust crystallization of luminescent metal halide nanocrystals into perfect face-centered-cubic (FCC) superlattices on the micrometer scale. The continuous growth of individual nanocrystals is observed within the superlattice, followed by the disassembly of the superlattices into individually dispersed nanocrystals owing to the highly repulsive interparticle interactions induced by large nanocrystals. Transmission electron microscopy characterization reveals that owing to an increase in solvent entropy, the structure of the superlattices transforms from FCC to hexagonal close-packed (HCP) and the nanocrystals disassemble. The FCC superlattice exhibits a single and slightly redshifted emission, due to the reabsorption-free property of the building block units. Compared to individual nanocrystals, the superlattices have three times higher quantum yield with improved environmental stability, making them ideal for use as ultrabright blue-light emitters. This study is expected to facilitate the creation of metamaterials with ordered nanocrystal structures and their practical applications.

3.
Small ; 18(42): e2203633, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108130

RESUMEN

Herein, a sequential gas-phase process involving air jet milling followed by chemical vapor deposition (CVD), is demonstrated to be an efficient strategy for the fabrication of heterolayered 2D nanohybrids (2DNHs) decorated with nanocatalysts. Tens of grams of the nanohybrids, which is a substantial quantity at the laboratory scale, are produced in the absence of solvents and water, and without the need for an extra purification procedure. Air jet milling enables the development of binary/ternary heterolayered structures consisting of graphene, WSe2 , and/or MoS2 via the gas-phase co-exfoliation of their bulk counterparts. Based on the X-ray photoelectron and Raman spectroscopy data, the heterolayers of the 2DNHs exert chemical and electronic effects on each other, while diminishing the interactions between same-component layers. Moreover, the electrochemically active surface area increases by >190% and the charge transfer resistance decreases by >35%. CVD is performed to introduce Pt and Ru nanoparticles with diameters of a few nanometers as additional electrocatalysts into the 2DNHs. The nanocatalyst-decorated 2DNHs show excellent performance for the production of hydrogen and oxygen gases in water-splitting cells. Notably, the proposed all-gas-phase processes allow for the large-scale production of functional 2DNHs with minimal negative environmental impact, which is crucial for the commercialization of nanomaterials.


Asunto(s)
Enfermedades Cardiovasculares , Grafito , Humanos , Agua , Grafito/química , Molibdeno , Hidrógeno , Gases , Oxígeno/química , Solventes
4.
Adv Sci (Weinh) ; 9(18): e2200441, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35451234

RESUMEN

To build devices offering users comfortable experience, it is important to focus on form factor and multifunctionality. In this study, for the first time, multifunctional Zn clusters with shape memory, self-healing, triboelectricity, and optical sensing synergized with rollable form factor are designed and fabricated by coordinating COO- and Zn2+ . As pore forming agent, Zn clusters produce hierarchical porous structure depending on Zn amount. Zn clusters are applied as message transmitters and charge containers in optical sensing and corona charge injection, respectively. Moreover, Zn clusters in PVB-COO-Zn serve as positive tribomaterial due to Zn ion doping effect, increasing the output performance as the Zn amount reaches 20 wt%. In addition, injecting positive charge into PVB-COO-Zn 20 lead to more than 24 times increase in output performance compared to those of non-porous structures. The reversibility of Zn clusters endows shape memory and self-healing, synergized with the rollable form factor. The rollability is implemented using the long alkyl chain and the energy absorption of porous structure, providing damage resistance. The advancements in this work provide opportunities for multifunctional and unique applications (shape memory rotating-triboelectric nanogenerator, rollable self-healing touchpad, hidden tag) synergized with rollability that accomplishes working in broadened condition in near future.


Asunto(s)
Zinc
5.
Small ; 17(18): e2007775, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33739582

RESUMEN

A simple, scalable, surfactant-in-polymer templating approach is demonstrated to create controlled long-range secondary substructures in a primary structure. A metal bis(2-ethylhexyl) sulfosuccinate (MAOT) as the surfactant is shown to be capable of serving as a sacrificial template and metal precursor in carbon nanofibers. The low interfacial tension and controllable dimensions of the MAOT are maintained in the solid-phase polymer, even during electrospinning and heat-treatment processes, allowing for the long-range uniform formation of substructures in the nanofibers. The MAOT content is found to be a critical parameter for tailoring the diameter of the nanofibers and their textural properties, such as size and volume of interior pores. The metal counterion species in the MAOT determine the introduction of metallic phases in the nanofiber interior. The incorporation of MAOT with Na as the counterion into the polymer phase leads to the formation of a built-in pore structure in the nanofibers. In contrast, MAOT with Fe as a counterion generates unique iron-in-pore substructures in the nanofibers (FeCNFs). The FeCNFs exhibit outstanding charge storage and water splitting performances. As a result, the MAOT-in-polymer templating approach can be extended to combinations of various metal precursors and thus create desirable functionalities for different target applications.

6.
Nanoscale ; 12(2): 1180, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31833517

RESUMEN

Correction for 'Pine cone mold: a toolbox for fabricating unique metal/carbon nanohybrid electrocatalysts' by Hyunwoo Han et al., Nanoscale, 2019, DOI: 10.1039/c9nr06794a.

7.
Nanoscale ; 11(48): 23241-23250, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31782466

RESUMEN

Nature presents delicate and complex materials systems beyond those fathomable by humans, and therefore, extensive effort has been made to utilize or mimic bio-materials and bio-systems in various fields. Biomass, an inexhaustible natural materials source, can also present good opportunities for the development of unprecedented, advanced materials and processing systems. Herein, we demonstrate the use of pine cones as a biomass mold for creating new and useful metal/carbon nanohybrids (MCNHs). The inherent water-induced folding actuation of the cone scales allows the casting of an aqueous solution of a single metal precursor or a binary metal mixture into the cone mold by simply immersing the cone in the solution. The cone actively absorbs aqueous-phase metal precursors through the bract scales and the precursor ions introduced into the cone are anchored to the functional groups of the interior tissues of the cone. Subsequent heat treatment successfully led to the formation of unique MCNHs. Iron, manganese, and cobalt were employed as model metals, binary mixtures of which were also cast into the cone mold to create further versatile MCNHs. Nanoparticulate metals were formed on the carbon supports, where the size, size distribution, and crystallinity of the nanoparticles were highly dependent on the identity of the single-component precursor and the combination of precursors. Consequently, the electrochemical activity of the MCNHs also depended on which metal precursors were cast into the cone mold. The MCNH prepared from the mixture of iron and manganese precursors (MFeMnCNH) showed the best electrochemical activity. As model applications, MFeMnCNH was applied to electrode materials for electrochemical charge storage and the oxygen evolution reaction. An electrochemical capacitor cell based on the MFeMnCNH electrodes showed excellent performance with energy densities of 38.7-54.2 W h kg-1 at power densities of 16 000-160 kW kg-1. In addition, MFeMnCNH demonstrated a low overpotential of 464 mV and fast kinetics with a Tafel slope of 64.6 mV dec-1 as an electrocatalyst for the oxygen evolution reaction in 1.0 M KOH. These results substantiate that pine cones as a biomass mold show great promise for creating versatile MCNHs through further combination of various precursors.

8.
Biosens Bioelectron ; 89(Pt 2): 919-926, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27818045

RESUMEN

Hydrogen sulfide is a critical biological messenger, but few biologically compatible methods are available for its detection in vivo. Here, we describe the design and synthesis of a novel azide-functionalized near-infrared probe, NIR-Az, for a hydrogen sulfide assay in which a self-immolative linker is incorporated between the azide moiety and phenolic dihydroxanthene fluorophore from a cyanine dye. A large "turn-on" near-infrared fluorescence signal results from the reduction of the azide group of the fluorogenic moiety to an amine, in which the self-immolative linker also enhances the accessibility of NIR-Az to hydrogen sulfide. NIR-Az can select hydrogen sulfide from among 16 analytes, including cysteine, glutathione, and homocysteine. By exploiting the superior properties of NIR-Az, such as its good biocompatibility and rapid cell internalization, we successfully demonstrated its usefulness in monitoring both the concentration- and time-dependent variations of hydrogen sulfide in living cells and animals (detection limit less than 0.26µM), thereby providing a powerful approach for probing hydrogen sulfide chemistry in biological systems.


Asunto(s)
Técnicas Biosensibles , Sulfuro de Hidrógeno/aislamiento & purificación , Espectrometría de Fluorescencia , Animales , Azidas/química , Cisteína/química , Cisteína/aislamiento & purificación , Fluorescencia , Colorantes Fluorescentes/química , Glutatión/química , Glutatión/aislamiento & purificación , Sulfuro de Hidrógeno/química
9.
Sci Rep ; 6: 33724, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650635

RESUMEN

Organophosphates are powerful inhibitors of acetylcholinesterase, which is critical to nerve function. Despite continuous research for detecting the highly toxic organophosphates, a new and improved methodology is still needed. Herein we demonstrate simple-to-fabricate chemiresistive gas sensors using conducting-polymer polypyrrole (PPy) nanotube transducers, which are chemically specific and capable of recognizing sub-ppb concentrations (ca. 0.5 ppb) of dimethyl methylphosphonate (DMMP), a simulant of nerve agent sarin. Interestingly, the introduction of carboxylic groups on the surface of PPy nanotube transistors resulted in enhanced sensitivity to DMMP via intermolecular hydrogen bonding. Furthermore, it was found that the sensitivity of the nanotube transducer depended on the degree of the carboxylic group introduced. Finally, a sensor array composed of 5 different transducers including the carboxylated nanotubes exhibited excellent selectivity to DMMP in 16 vapor species.

10.
Nanoscale ; 8(23): 11940-8, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27242155

RESUMEN

Nanoparticles pack together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle packing is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle packing on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random packing of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated packing behaviors compared with the monophasic packing of each nanosphere species. The packing of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense packing of the nanospheres, which in turn could contribute to better device performance. The dense packing of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface area for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle packing" for desirable device performance.

12.
Sci Rep ; 6: 19761, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26813878

RESUMEN

Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all-solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg(-1) or 1.9 Wh L(-1) at a maximum power density of 3.2 kW kg(-1) or 0.7 kW L(-1); these performances were based on the mass or packing density of the electrode materials.

13.
Sci Rep ; 5: 14097, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26373685

RESUMEN

Preparation of conducting-polymer hollow nanoparticles with different diameters was accomplished by surfactant templating. An anionic surfactant, namely sodium dodecylbenzenesulfonate, formed vesicles to template with the pyrrole monomer. Subsequent chemical oxidative polymerization of the monomer yielded spherical polypyrrole (PPy) nanoparticles with hollow interiors. The diameter of the hollow nanoparticles was easily controlled by adjusting the concentration of the surfactant. Subsequently, the size-dependent electrochemical properties of the nanoparticles, including redox properties and charge/discharge behavior, were examined. By virtue of the structural advantages, the specific capacitance (max. 326 F g(-1)) of PPy hollow nanoparticles was approximately twice as large as that of solid PPy nanospheres. The hollow PPy nanostructure can easily be used as a conductive substrate for the preparation of metal/polymer nanohybrids through chemical and electrochemical deposition. Two different pseudocapacitive metal-oxide clusters were readily deposited on the inner and outer surfaces of the hollow nanoparticles, which resulted in an increase in the specific capacitance to 390 F g(-1). In addition, the hollow nanoparticles acted as a nanocage to prevent metal ion leaching during charge/discharge, thus allowing an excellent capacitance retention of ca. 86%, even following 10,000 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA