RESUMEN
Doping of quantum antiferromagnets is an established approach to investigate the robustness of their ground state against the competing phases. Predictions of doping effects on the ground state of the Shastry-Sutherland dimer model are here verified experimentally on Mg-doped SrCu2(BO3)2. A partial incorporation of Mg2+ on the Cu2+ site in the SrCu2(BO3)2 structure leads to a subtle but systematic lattice expansion with the increasing Mg-doping concentration, which is accompanied by a slight decrease in the spin gap, the Curie-Weiss temperature, and the peak temperature of the susceptibility. These findings indicate a doping-induced breaking of Cu2+ spin-1/2 dimers that is also corroborated by X-band EPR spectroscopy that points to a systematic increase in the intensity of free Cu2+ sites with increasing Mg-doping concentration. Extending the Mg-doping up to nominal x = 0.10 yielding SrCu1.9Mg0.1(BO3)2, in the magnetization measurements taken up to 35 T, a suppression of the pseudo-1/8 plateau is found along with a clear presence of an anomaly at an onset critical field µ0H'C0 ≈ 9 T. The latter, absent in pure SrCu2(BO3)2, emerges due to the pairwise coupling of liberated Cu2+ spin-1/2 entities in the vicinity of Mg-doping induced impurities.
RESUMEN
Pyrochlore magnets have attracted interest as systems for realizing critical phenomena, rich magnetic structures, associated topological band structures, and nontrivial quantum phases. Na3Co(CO3)2Cl is a pseudospin-1/2 antiferromagnet in which the Co2+ions form a pyrochlore network. Its structural and magnetic properties were investigated using magnetization, heat capacity, ESR, single-crystal x-ray diffraction, powder neutron diffraction and powder inelastic neutron scattering. Magnetization and heat capacity measurements indicated a ground-state doublet, which is regarded as pseudospin 1/2, dominated the magnetic properties at low temperatures, with a magnetic exchange of 9.6 K. As the temperature decreases, a magnetic transition is observed at 1.6 K, which is confirmed to be an all-in-all-out magnetic order. The crystal field excitations observed by inelastic neutron scattering experiments indicated the Ising nature of the ground-state doublet. This thorough study revealed that Na3Co(CO3)2Cl can be regarded as a pseudospin-1/2 pyrochlore lattice antiferromagnet with dominant Ising-type interactions.
RESUMEN
This study investigates the effect of A-site disorder, characterized by the average ionic radius (ãrAã) and the cation mismatch (σ2), on the structural, magnetic, critical behavior, and magnetic entropy changes in La0.7(Ba,Ca,Sr)0.3MnO3 manganites with trisubstituted Ba, Ca, and Sr. The sol-gel method was used to prepare polycrystalline samples. All series of compounds crystallize in rhombohedral symmetry with the R3Ìc space group. A linear relationship between lattice parameters, unit cell volume, and ãrAã was observed. This reveals an unusual behavior in the correlation between ãrAã and σ2 concerning magnetic properties, which is attributed to the complex simultaneous trisubstitution of divalent ions. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were utilized to validate the chemical composition of compounds. All the samples crystallized in rhombohedral symmetry, and the lattice parameters increased continuously with increasing ãrAã. A-site disorder causes distortions in the Mn-O bond length and Mn-O-Mn bond angle in the MnO6 octahedral structure, which influences the double-exchange interaction and electronic bandwidth (W). The Curie temperature (TC) increases linearly with increasing W. The critical behavior around TC for all the samples was investigated by determining the values of the critical exponents (ß, γ, and δ) using the modified Arrott plot (MAP) method. The estimated critical exponents show that the unconventional model establishes a short-range ferromagnetic order. The maximum magnetic entropy change (-ΔSM) was obtained with the lowest ãrAã and σ2 value. The analysis of the critical behavior and universal curve indicates a second-order phase transition (SOPT) nature for all samples.
RESUMEN
The solvothermal reaction of FeCl2 â 4H2O and H4TBC[4] in a basic dmf/EtOH solution affords an [FeIII 18] Keplerate conforming to a stellated cuboctahedron. Magnetic and heat capacity measurements reveal spin frustration effects arising from the high symmetry. A crossover between inverse and direct magnetocaloric effects is observed at ~10â K for applied-field changes lower than 3â T.
RESUMEN
We have prepared a bis(compartmental) Mannich base ligand H4L (1,4,8,11-tetraaza-1,4,8,11-tetrakis(2-hydroxy-3-methoxy-5-methylbenzyl)cyclotetradecane) specifically designed to obtain bis(TMIILnIII) tetranuclear complexes (TM = transition metal). In this regard, we have succeeded in obtaining three new complexes of the formula [Zn2(µ-L)(µ-OAc)Dy2(NO3)2]·[Zn2(µ-L)(µ-OAc)Dy2(NO3)(OAc)]·4CHCl3·2MeOH (1) and [TM2(µ-H2L)2(µ-succinate)Ln2(NO3)2] (NO3)2·2H2O·6MeOH (TMII = Zn, LnIII = Dy (2); TMII = Co, LnIII = Dy (3)). Compound 1 contains two different bis(ZnDy) tetranuclear molecules that cocrystallize in the structure, in which acetato bridging ligands connect the ZnII and DyIII ions within each ZnDy subunit. This compound does not exhibit slow magnetic relaxation at zero field, but it is activated in the presence of an applied dc magnetic field and/or by Dy/Y magnetic dilution, showing two relaxation processes corresponding to each of the two different bis(ZnDy) units found in the structure. As revealed by the theoretical calculations, magnetic relaxation in 1 is single-ion in origin and takes place through the first excited state of each DyIII ion. When using the succinato dicarboxylate bridging ligand instead of acetate, compounds 2 and 3 were serendipitously formed, which have a closed structure with the succinate anion bridging two ZnDy subunits belonging to two different ligands. It should be noted that only compound 2 exhibits slow relaxation of magnetization in the absence of an external magnetic field. According to experimental and theoretical data, 2 relaxes through the second excited Kramers doublet (Ueff = 342 K). In contrast, 3 displays field-induced SMM behaviour (Ueff = 203 K). However, the Co/Zn diluted version of this compound 3Zn shows slow relaxation at zero field (Ueff = 347 K). Ab initio theoretical calculations clearly show that the weak ferromagnetic coupling between CoII and DyIII ions is at the origin of the lack of slow relaxation of this compound at zero field. Compound 2 and its diluted analogues 2Y and 3Zn show hysteresis loops at very low temperature, thus confirming their SMM behaviour. Finally, compounds 1 and 2 show DyIII based emission even at room temperature that, in the case of 2, allows us to extract the splitting of the ground 6H15/2 term, which matches reasonably well with theoretical calculations.
RESUMEN
Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.
RESUMEN
Strongly correlated spin systems can be driven to quantum critical points via various routes. In particular, gapped quantum antiferromagnets can undergo phase transitions into a magnetically ordered state with applied pressure or magnetic field, acting as tuning parameters. These transitions are characterized by z = 1 or z = 2 dynamical critical exponents, determined by the linear and quadratic low-energy dispersion of spin excitations, respectively. Employing high-frequency susceptibility and ultrasound techniques, we demonstrate that the tetragonal easy-plane quantum antiferromagnet NiCl2 â 4SC(NH2)2 (aka DTN) undergoes a spin-gap closure transition at about 4.2 kbar, resulting in a pressure-induced magnetic ordering. The studies are complemented by high-pressure-electron spin-resonance measurements confirming the proposed scenario. Powder neutron diffraction measurements revealed that no lattice distortion occurs at this pressure and the high spin symmetry is preserved, establishing DTN as a perfect platform to investigate z = 1 quantum critical phenomena. The experimental observations are supported by DMRG calculations, allowing us to quantitatively describe the pressure-driven evolution of critical fields and spin-Hamiltonian parameters in DTN.
RESUMEN
In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the Bose-Einstein condensation (BEC) of magnon excitations. In the strongly frustrated system SrCu2(BO3)2, no clear magnon BEC could be observed, pointing to an alternative mechanism, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu2(BO3)2 up to 25.9 T and use cylinder matrix-product-states (MPS) calculations to reproduce the experimental spectra with high accuracy. Multiple unconventional features point to a condensation of S = 2 bound states into a spin-nematic phase, including the gradients of the one-magnon branches and the persistence of a one-magnon spin gap. This gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in SrCu2(BO3)2 is best understood as a condensate of bosonic Cooper pairs.
RESUMEN
The recently demonstrated chiral modes of lattice motion carry angular momentum and therefore directly couple to magnetic fields. Notably, their magnetic moments are predicted to be strongly influenced by electronic contributions. Here, we have studied the magnetic response of transverse optical phonons in a set of Pb1-xSnxTe films, which is a topological crystalline insulator for x > 0.32 and has a ferroelectric transition at an x-dependent critical temperature. Polarization-dependent terahertz magnetospectroscopy measurements revealed Zeeman splittings and diamagnetic shifts, demonstrating a large phonon magnetic moment. Films in the topological phase exhibited phonon magnetic moment values that were larger than those in the topologically trivial samples by two orders of magnitude. Furthermore, the sign of the effective phonon g-factor was opposite in the two phases, a signature of the topological transition according to our model. These results strongly indicate the existence of interplay between the magnetic properties of chiral phonons and the topology of the electronic band structure.
RESUMEN
A new linear trinuclear Co(II)3 complex with a formula of [{Co(µ-L)}2Co] has been prepared by self-assembly of Co(II) ions and the N3O3-tripodal Schiff base ligand H3L, which is obtained from the condensation of 1,1,1-tris(aminomethyl)ethane and salicylaldehyde. Single X-ray diffraction shows that this compound is centrosymmetric with triple-phenolate bridging groups connecting neighboring Co(II) ions, leading to a paddle-wheel-like structure with a pseudo-C3 axis lying in the Co-Co-Co direction. The Co(II) ions at both ends of the Co(II)3 molecule exhibit distorted trigonal prismatic CoN3O3 geometry, whereas the Co(II) at the middle presents an elongated trigonal antiprismatic CoO6 geometry. The combined analysis of the magnetic data and theoretical calculations reveal strong easy-axis magnetic anisotropy for both types of Co(II) ions (|D| values higher than 115 cm-1) with the local anisotropic axes lying on the pseudo-C3 axis of the molecule. The magnetic exchange interaction between the middle and ends Co(II) ions, extracted by using either a Hamiltonian accounting for the isotropic magnetic coupling and ZFS or the Lines' model, was found to be medium to strong and antiferromagnetic in nature, whereas the interaction between the external Co(II) ions is weak antiferromagnetic. Interestingly, the compound exhibits slow relaxation of magnetization and open hysteresis at zero field and therefore SMM behavior. The significant magnetic exchange coupling found for [{Co(µ-L)}2Co] is mainly responsible for the quenching of QTM, which combined with the easy-axis local anisotropy of the CoII ions and the collinearity of their local anisotropy axes with the pseudo-C3 axis favors the observation of SMM behavior at zero field.
RESUMEN
Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for probing the momentum-resolved single-particle spectral function of materials. Historically, in situ magnetic fields have been carefully avoided as they are detrimental to the control of photoelectron trajectory during the photoelectron detection process. However, magnetic field is an important experimental knob for both probing and tuning symmetry-breaking phases and electronic topology in quantum materials. In this paper, we introduce an easily implementable method for realizing an in situ tunable magnetic field at the sample position in an ARPES experiment and analyze magnetic-field-induced artifacts in the ARPES data. Specifically, we identified and quantified three distinct extrinsic effects of a magnetic field: constant energy contour rotation, emission angle contraction, and momentum broadening. We examined these effects in three prototypical quantum materials, i.e., a topological insulator (Bi2Se3), an iron-based superconductor (LiFeAs), and a cuprate superconductor (Pb-Bi2Sr2CuO6+x), and demonstrate the feasibility of ARPES measurements in the presence of a controllable magnetic field. Our studies lay the foundation for the future development of the technique and interpretation of ARPES measurements of field-tunable quantum phases.
RESUMEN
The structurally related odd and even numbered wheels [FeIII 11 ZnII 4 (tea)10 (teaH)1 (OMe)Cl8 ] (1) and [FeIII 12 ZnII 4 (tea)12 Cl8 ] (2) can be synthesized under ambient conditions by reacting FeIII and ZnII salts with triethanolamine (teaH3 ), the change in nuclearity being dictated by the solvents employed. An antiferromagnetic exchange between nearest neighbors, J = -10.0 cm-1 for 1 and J = -12.0 cm-1 for 2, leads to a frustrated S = 1/2 ground state in the former and an S = 0 ground state in the latter.
RESUMEN
Organic radicals are widely used as linkers or ligands to synthesize molecular magnetic materials. However, studies regarding the molecular anisotropies of radical-based magnetic materials and their multifunctionalities are rare. Herein, a photoisomerizable diarylethene ligand was used to form {[CoIII(3,5-DTSQ·-)(3,5-DTCat2-)]2(6F-DAE-py2)}·3CH3CN·H2O (o-1·3CH3CN·H2O, 6F-DAE-py2 = 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene), a valence-tautomeric (VT) coordination polymer. We directly observed dual radicals for a single crystal using high-field/-frequency (â¼13.3 T and â¼360 GHz) electron paramagnetic resonance (EPR) spectroscopy along the c-axis, which was further confirmed by angle-dependent Q-band EPR spectroscopy. Moreover, a conductive anomaly close to the VT transition temperature was observed only when probes were attached at the ab plane of the single crystal, indicative of synergy between valence tautomerism and conductivity. Structural anisotropy studies and density functional theory (DFT) calculations revealed that this synergy is due to electron transfer associated with valence tautomerism. This study presents the first example of dual-radical-based molecular anisotropy and charge-transfer-induced conductive anisotropy in a photoswitchable coordination polymer.
RESUMEN
The replacement of pyridine by 1-methyl-imidazol in the arms of a N6-tripodal ligand allows preparing two new CoII complexes with quasi-ideal triangular prismatic geometry, which behave as SIMs (Single Ion Magnets) at zero dc field with enhanced axial magnetic anisotropy, magnetic relaxation times and magnetic hysteresis.
RESUMEN
Data carriers using spin waves in spintronic and magnonic logic devices offer operation at low power consumption and free of Joule heating yet requiring noncollinear spin structures of small sizes. Heterometallic rings can provide such an opportunity due to the controlled spin-wave transmission within such a confined space. Here, we present a series of {ScnGdn} (n = 4, 6, 8) heterometallic rings, which are the first Sc-Ln clusters to date, with tunable magnetic interactions for spin-wave excitations. By means of time- and temperature-dependent spin dynamics simulations, we are able to predict distinct spin-wave excitations at finite temperatures for Sc4Gd4, Sc6Gd6, and Sc8Gd8. Such a new model is previously unexploited, especially due to the interplay of antiferromagnetic exchange, dipole-dipole interaction, and ring topology at low temperatures, rendering the importance of the latter to spin-wave excitations.
RESUMEN
PbTe crystals have a soft transverse optical phonon mode in the terahertz frequency range, which is known to efficiently decay into heat-carrying acoustic phonons, resulting in anomalously low thermal conductivity. Here, we studied this phonon via polarization-dependent terahertz spectroscopy. We observed softening of this mode with decreasing temperature, indicative of incipient ferroelectricity, which we explain through a model including strong anharmonicity with a quartic displacement term. In magnetic fields up to 25 T, the phonon mode splits into two modes with opposite handedness, exhibiting circular dichroism. Their frequencies display Zeeman splitting together with an overall diamagnetic shift with increasing magnetic field. Using a group-theoretical approach, we demonstrate that these observations are the result of magnetic field-induced morphic changes in the crystal symmetries through the Lorentz force exerted on the lattice ions. Thus, our Letter reveals a novel process of controlling phonon properties in a soft ionic lattice by a strong magnetic field.
RESUMEN
The normal state of high-Tc cuprates has been considered one of the essential topics in high-temperature superconductivity research. However, compared to the high magnetic field study of it, understanding a photoinduced normal state remains elusive. Here, we explore a photoinduced normal state of YBa2Cu3O6.67 through a charge density wave (CDW) with time-resolved resonant soft x-ray scattering, as well as a high magnetic field x-ray scattering. In the nonequilibrium state where people predict a quenched superconducting state based on the previous optical spectroscopies, we experimentally observed a similar analogy to the competition between superconductivity and CDW shown in the equilibrium state. We further observe that the broken pairing states in the superconducting CuO2 plane via the optical pump lead to nucleation of three-dimensional CDW precursor correlation. Ultimately, these findings provide a critical clue that the characteristics of the photoinduced normal state show a solid resemblance to those under magnetic fields in equilibrium conditions.
RESUMEN
Recently found anomalous Hall, Nernst, magnetooptical Kerr, and spin Hall effects in the antiferromagnets Mn3X (X = Sn, Ge) are attracting much attention for spintronics and energy harvesting. Since these materials are antiferromagnets, the origin of these functionalities is expected to be different from that of conventional ferromagnets. Here, we report the observation of ferroic order of magnetic octupole in Mn3Sn by X-ray magnetic circular dichroism, which is only predicted theoretically so far. The observed signals are clearly decoupled with the behaviors of uniform magnetization, indicating that the present X-ray magnetic circular dichroism is not arising from the conventional magnetization. We have found that the appearance of this anomalous signal coincides with the time reversal symmetry broken cluster magnetic octupole order. Our study demonstrates that the exotic material functionalities are closely related to the multipole order, which can produce unconventional cross correlation functionalities.
RESUMEN
Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system's ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.
RESUMEN
Unpaired electrons which are essential for organic radicals and magnetic materials are hardly to align parallel, especially upon the increasing of spin numbers. Here, we show that the antiferromagnetic interaction in the largest Cr(III)-RE (rare earth) cluster {Cr10RE18} leads to 96 parallel electrons, forming a ground spin state S T of 48 for RE = Gd. This is so far the third largest ground spin state achieved in one molecule. Moreover, by using the classical Monte Carlo simulation, the exchange coupling constants J i j can be determined. Spin dynamics simulation reveals that the strong Zeeman effects of 18 Gd(III) ions stabilize the ground ferrimagnetic state and hinder the magnetization reversals of these spins. In addition, the dysprosium(III) analog is an exchange-biasing single-molecule magnet. We believe that the ferrimagnetic approach and analytical protocol established in this work can be applied generally in constructing and analyzing giant spin molecules.