Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(3): 2104-2114, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36712615

RESUMEN

Three copper(ii) tetraaza complexes [Cu(ii)LBr]Br (1a), [Cu(ii)L(CIO4)](CIO4) (2a) and [Cu(ii)L](CIO4)2 (2b), where L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-diene were prepared and confirmed by FTIR, 1HNMR and 13CNMR. The binding interaction of complex (1a, 2a, 2b) with calf thymus DNA (CT-DNA) was investigated using UV-vis absorption, luminescence titrations, viscosity measurements and molecular docking. The findings suggested that complex 1a, 2a and 2b bind to DNA by electrostatic interaction, and the strengths of the interaction were arranged according to 2b > 1a > 2a. The differences in binding strengths were certainly caused by the complexes' dissimilar charges and counter anions. Complex 2b, with the biggest binding strength towards the DNA, was further applied in developing the porcine sensor. The developed sensor exhibits a broad linear dynamic range, low detection limit, good selectivity, and reproducibility. Analysis of real samples showed that the biosensor had excellent selectivity towards the pork meat compared to chicken and beef meat.

2.
Membranes (Basel) ; 12(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36422142

RESUMEN

A novel rapid and sensitive optical sensor for Cu2+ ion detection based on 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium dibromide (TL) immobilized on Santa Barbara Amorphous (SBA-15) has been successfully developed. The inner and outer space of SBA15 allowed a high capacity of TL compound to immobilize onto it. FESEM (Field Emission Scanning Electron Microscopy) analysis was performed to confirm the morphology of TL-SBA15, while FTIR (Fourier Transform Infrared Spectroscopy) was utilized to confirm the interaction of TL−SBA15. A binding study of TL compound towards Cu2+ ion was performed via UV-vis solution study and binding titration. The stoichiometric binding ratio and binding constant value Kb of TL towards Cu2+ ion was 1:1 and 2.33 × 103 M−1, respectively. The optical reflectance sensor based on the TL compound is selective to Cu2+ ion and demonstrated a linear response over a Cu2+ ion concentration range of 1 × 10−7 M to 2 × 10−5 M, with a detection limit (LOD) of 1.02 × 10−7 M (R2 = 0.99) and fast response time of < 1 min. It showed high reproducibility, with a relative standard deviation (RSD) obtained at 0.47%. This optical sensor is reusable up to five consecutive times on Cu2+ ion by using 0.1 M EDTA with a pH of 6 as a regeneration solution, with a reversibility RSD value of 0.79%. The developed optical sensor provides a rapid and sensitive tool for Cu2+ ion detection in teabag samples, and the results align with those obtained by the ICP-MS standard method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...