Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Part Fibre Toxicol ; 3: 12, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16911796

RESUMEN

BACKGROUND: Epidemiological studies have reported increased risks of cardiopulmonary-related hospitalization and death in association with exposure to elevated levels of particulate matter (PM) across a wide range of urban areas. In response to these findings, researchers have conducted animal inhalation exposures aimed at reproducing the observed toxicologic effects. However, it is technically difficult to quantitate the actual amount of PM delivered to the lung in such studies, and dose is frequently estimated using default respiration parameters. Consequently, the interpretation of PM-induced effects in rodents exposed via whole-body inhalation is often compromised by the inability to determine deposited dose. To address this problem, we have developed an exposure system that merges the generation of dry, aerosolized particles with whole-body plethysmography (WBP), thus permitting inhalation exposures in the unrestrained rat while simultaneously obtaining data on pulmonary function. RESULTS: This system was validated using an oil combustion-derived particle (HP12) at three nominal concentrations (3, 12, and 13 mg/m3) for four consecutive exposure days (6 hr/day); a single 6-hour exposure to 13 mg/m3 of HP12 was also conducted. These results demonstrated that the system was both reliable and consistent over these exposure protocols, achieving average concentrations that were within 10% of the targeted concentration. In-line filters located on the exhaust outlets of individual WBP chambers showed relative agreement in HP12 mass for each day and were not statistically different when compared to one another (p = 0.16). Temperatures and relative humidities were also similar between chambers during PM and air exposures. Finally, detailed composition analyses of both HP12 filter and bulk samples showed that grinding and aerosolization did not change particle chemistry. CONCLUSION: The results of this study demonstrate that it is possible to expose rodents to resuspended, dry PM via whole-body inhalation while these animals are maintained in WBP chambers. This new methodology should significantly improve the ability to assess dosimetry under minimally stressful exposure conditions.

2.
Toxicol Sci ; 93(2): 400-10, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16840562

RESUMEN

A plethora of epidemiological studies have shown that exposure to elevated levels of ambient particulate matter (PM) can lead to adverse health outcomes, including cardiopulmonary-related mortality. Subsequent animal toxicological studies have attempted to mimic these cardiovascular and respiratory responses, in order to better understand underlying mechanisms. However, it is difficult to quantitate the amount of PM deposited in rodent lungs following inhalation exposure, thus making fundamental dose-to-effect assessment and linkages to human responses problematic. To address this need, spontaneously hypertensive rats were exposed to an oil combustion-derived PM (HP12) via inhalation while being maintained in whole-body plethysmograph chambers. Rats were exposed 6 h/day to 13 mg/m(3) of HP12 for 1 or 4 days. Immediately following the last exposure, rats were sacrificed and their tracheas and lung lobes harvested and separated for neutron activation analysis. Total lower respiratory tract deposition ranged from 20-60 microg to 89-139 microg for 1- and 4-day exposures, respectively. Deposition data were compared to default and rat-specific estimates provided by the Multiple Path Particle Deposition (MPPD) model, yielding model predictions that were < 33% of the measured dose. This study suggests that HP12 exposure decreased particle clearance, as the mass of HP12 in the lungs following a 4-day protocol was nearly four times that observed after a 1-day exposure. This work should improve the ability of risk assessors to extrapolate rat-to-human exposure concentrations on the basis of lung burdens and, thus, better relate inhaled doses and resultant toxicological effects.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Hipertensión/metabolismo , Exposición por Inhalación/efectos adversos , Animales , Peso Corporal , Humanos , Pulmón/metabolismo , Masculino , Ratas , Ratas Endogámicas SHR
3.
Environ Res ; 92(1): 35-47, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12706753

RESUMEN

Rodents often demonstrate a profound depression in physiological function following acute exposure to toxic xenobiotic agents. This effect, termed the hypothermic response, is primarily characterized by significant decreases in core temperature and heart rate and is generally accompanied by similar deficits in other important functional parameters. This response appears to be remarkably consistent across a wide variety of toxic agents and exposure regimens; however, the magnitude and duration of the induced effects may be modulated by changes in dose, animal mass, and environmental conditions. While the initiating stimulus and underlying mechanism(s) remains elusive, this response may represent an inherent reflexive pattern that is unique to the rodent and serves to attenuate the induced toxicity. Given that rodents are the primary animal species used in toxicological studies, it is important to consider this hypothermic response and its modulatory factors when interpreting the results of such studies and extrapolating those results to man.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Regulación de la Temperatura Corporal/fisiología , Hipotermia/inducido químicamente , Exposición por Inhalación , Condicionamiento Físico Animal , Animales , Regulación de la Temperatura Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Ambiente , Frecuencia Cardíaca , Humanos , Oxidantes Fotoquímicos/efectos adversos , Ozono/efectos adversos , Tamaño de la Partícula , Ratas , Ratas Endogámicas F344
4.
J Toxicol Environ Health A ; 65(20): 1615-31, 2002 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-12396871

RESUMEN

Particulate matter air pollution has been associated with cardiopulmonary morbidity and mortality in many recent epidemiological studies. Previous toxicological research has demonstrated profound cardiac and thermoregulatory changes in rats following exposure to residual oil fly ash (ROFA), a combustion-derived particulate. The response to ROFA appeared biphasic, consisting of both immediate (0-6 h) and delayed (24-96 h) bradycardia and hypothermia. Other studies have demonstrated that much of the pulmonary toxicity of ROFA was caused by its constitutive transition metals, namely, Fe, Ni, and V. This study examined the contributions of these metals to the observed cardiac and thermoregulatory changes caused by ROFA in conscious, unrestrained rats. Prior to exposure, each animal was surgically implanted with a radiotelemetry device capable of continuously monitoring heart rate, electrocardiographic, and core temperature data. Individual metals were intratracheally instilled in healthy rats (n = 4 per metal species) and in rats with monocrotaline (MCT; 60 mg/kg)-induced pulmonary hypertension (n = 10 per metal species); combinations of metals were instilled in MCT-treated rats only (n = 6 per combination of metal species). Metals were administered in doses equivalent to those found in the highest dose of ROFA used in previous studies, that is, 105 microg Fe(2)(SO(4))(3), 263 microg NiSO(4), and 245 microg VSO(4). Healthy and MCT-treated rats demonstrated similar responses to metals. Fe caused little response, whereas V caused marked bradycardia, arrhythmogenesis, and hypothermia immediately following instillation and lasting approximately 6 h. Ni caused no immediate response, but induced a delayed bradycardia, arrhythmogenesis, and hypothermia that began approximately 24 h after instillation and lasted for several days. When instilled in combination, Ni appeared to exacerbate the immediate effects of V, whereas Fe attenuated them. These data suggest that the biphasic response to instilled ROFA may result from a summation of the temporally different effects of V and Ni.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Arritmias Cardíacas/etiología , Bradicardia/etiología , Hipotermia/etiología , Pulmón/patología , Metales/toxicidad , Análisis de Varianza , Animales , Regulación de la Temperatura Corporal/fisiología , Electrocardiografía , Frecuencia Cardíaca/fisiología , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...