Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 22561, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581654

RESUMEN

Single-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Microscopía/métodos , Imagen Individual de Molécula/métodos , Algoritmos , Análisis por Conglomerados , Nanotecnología
2.
PLoS Comput Biol ; 18(10): e1010543, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36191056

RESUMEN

Short-term synaptic plasticity and modulations of the presynaptic vesicle release rate are key components of many working memory models. At the same time, an increasing number of studies suggests a potential role of astrocytes in modulating higher cognitive function such as WM through their influence on synaptic transmission. Which influence astrocytic signaling could have on the stability and duration of WM representations, however, is still unclear. Here, we introduce a slow, activity-dependent astrocytic regulation of the presynaptic release probability in a synaptic attractor model of WM. We compare and analyze simulations of a simple WM protocol in firing rate and spiking networks with and without astrocytic regulation, and underpin our observations with analyses of the phase space dynamics in the rate network. We find that the duration and stability of working memory representations are altered by astrocytic signaling and by noise. We show that astrocytic signaling modulates the mean duration of WM representations. Moreover, if the astrocytic regulation is strong, a slow presynaptic timescale introduces a 'window of vulnerability', during which WM representations are easily disruptable by noise before being stabilized. We identify two mechanisms through which noise from different sources in the network can either stabilize or destabilize WM representations. Our findings suggest that (i) astrocytic regulation can act as a crucial determinant for the duration of WM representations in synaptic attractor models of WM, and (ii) that astrocytic signaling could facilitate different mechanisms for volitional top-down control of WM representations and their duration.


Asunto(s)
Astrocitos , Memoria a Corto Plazo , Astrocitos/fisiología , Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Transmisión Sináptica
3.
Sci Adv ; 7(38): eabj0790, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533986

RESUMEN

To supply proteins to their vast volume, neurons localize mRNAs and ribosomes in dendrites and axons. While local protein synthesis is required for synaptic plasticity, the abundance and distribution of ribosomes and nascent proteins near synapses remain elusive. Here, we quantified the occurrence of local translation and visualized the range of synapses supplied by nascent proteins during basal and plastic conditions. We detected dendritic ribosomes and nascent proteins at single-molecule resolution using DNA-PAINT and metabolic labeling. Both ribosomes and nascent proteins positively correlated with synapse density. Ribosomes were detected at ~85% of synapses with ~2 translational sites per synapse; ~50% of the nascent protein was detected near synapses. The amount of locally synthesized protein detected at a synapse correlated with its spontaneous Ca2+ activity. A multifold increase in synaptic nascent protein was evident following both local and global plasticity at respective scales, albeit with substantial heterogeneity between neighboring synapses.

4.
Cell Rep ; 33(7): 108391, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207192

RESUMEN

Across their dendritic trees, neurons distribute thousands of protein species that are necessary for maintaining synaptic function and plasticity and that need to be produced continuously and trafficked to their final destination. As each dendritic branchpoint splits the protein flow, increasing branchpoints decreases the total protein number downstream. Consequently, a neuron needs to produce more proteins to maintain a minimal protein number at distal synapses. Combining in vitro experiments and a theoretical framework, we show that proteins that diffuse within the cell plasma membrane are, on average, 35% more effective at reaching downstream locations than proteins that diffuse in the cytoplasm. This advantage emerges from a bias for forward motion at branchpoints when proteins diffuse within the plasma membrane. Using 3D electron microscopy (EM) data, we show that pyramidal branching statistics and the diffusion lengths of common proteins fall into a region that minimizes the overall protein need.


Asunto(s)
Dendritas/metabolismo , Dendritas/fisiología , Neuronas/fisiología , Animales , Dineínas , Femenino , Cinesinas , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Modelos Estadísticos , Plasticidad Neuronal , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
5.
iScience ; 23(11): 101701, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33235980

RESUMEN

Glia, the helper cells of the brain, are essential in maintaining neural resilience across time and varying challenges: By reacting to changes in neuronal health glia carefully balance repair or disposal of injured neurons. Malfunction of these interactions is implicated in many neurodegenerative diseases. We present a reductionist model that mimics repair-or-dispose decisions to generate a hypothesis for the cause of disease onset. The model assumes four tissue states: healthy and challenged tissue, primed tissue at risk of acute damage propagation, and chronic neurodegeneration. We discuss analogies to progression stages observed in the most common neurodegenerative conditions and to experimental observations of cellular signaling pathways of glia-neuron crosstalk. The model suggests that the onset of neurodegeneration can result as a compromise between two conflicting goals: short-term resilience to stressors versus long-term prevention of tissue damage.

6.
J Chem Phys ; 149(4): 044705, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30068201

RESUMEN

Inhomogeneous fluids exhibit physical properties that are neither uniform nor isotropic. The pressure tensor is a case in point, key to the mechanical description of the interfacial region. Kirkwood and Buff and, later, Irving and Kirkwood, obtained a formal treatment based on the analysis of the pressure across a planar surface [J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17(3), 338 (1949); J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950)]. We propose a generalisation of Irving and Kirkwood's argument to fluctuating, non-planar surfaces and obtain an expression for the pressure tensor that is not smeared by thermal fluctuations at the molecular scale and corresponding capillary waves [F. P. Buff et al., Phys. Rev. Lett. 15, 621-623 (1965)]. We observe the emergence of surface tension, defined as an excess tangential stress, acting exactly across the dividing surface at the sharpest molecular resolution. The new statistical mechanical expressions extend current treatments to fluctuating inhomogeneous systems far from equilibrium.

7.
Pflugers Arch ; 469(2): 303-311, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27987038

RESUMEN

Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.


Asunto(s)
Diferenciación Celular/genética , Células Epiteliales/metabolismo , Genoma/genética , Riñón/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Complementario/genética , Células Madre Embrionarias/metabolismo , Edición Génica/métodos , Genotipo , Humanos , Ratones , Enfermedades Renales Poliquísticas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
8.
Eur Phys J E Soft Matter ; 36(3): 26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23515762

RESUMEN

The behaviour of a solid-liquid-gas system near the three-phase contact line is considered using a diffuse-interface model with no-slip at the solid and where the fluid phase is specified by a continuous density field. Relaxation of the classical approach of a sharp liquid-gas interface and careful examination of the asymptotic behaviour as the contact line is approached is shown to resolve the stress and pressure singularities associated with the moving contact line problem. Various features of the model are scrutinised, alongside extensions to incorporate slip, finite-time relaxation of the chemical potential, or a precursor film at the wall.

9.
Phys Rev Lett ; 109(12): 120603, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23005931

RESUMEN

We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.


Asunto(s)
Coloides/química , Modelos Químicos , Hidrodinámica
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 1): 021603, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21928995

RESUMEN

We study the equilibrium of a liquid film on an attractive spherical substrate for an intermolecular interaction model exhibiting both fluid-fluid and fluid-wall long-range forces. We first reexamine the wetting properties of the model in the zero-curvature limit, i.e., for a planar wall, using an effective interfacial Hamiltonian approach in the framework of the well known sharp-kink approximation (SKA). We obtain very good agreement with a mean-field density functional theory (DFT), fully justifying the use of SKA in this limit. We then turn our attention to substrates of finite curvature and appropriately modify the so-called soft-interface approximation (SIA) originally formulated by Napiórkowski and Dietrich [Phys. Rev. B34, 6469 (1986)] for critical wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the SKA functional form for the film growth. However, it turns out that the agreement between SKA and our DFT is only qualitative. We then show that the quantitative discrepancy between the two is due to the overestimation of the liquid-gas surface tension within SKA. On the other hand, by relaxing the assumption of a sharp interface, with, e.g., a simple "smoothing" of the density profile there, markedly improves the predictive capability of the theory, making it quantitative and showing that the liquid-gas surface tension plays a crucial role when describing wetting on a curved substrate. In addition, we show that in contrast to SKA, SIA predicts the expected mean-field critical exponent of the liquid-gas surface tension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...