Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Craniomaxillofac Surg ; 52(4): 420-431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461138

RESUMEN

The study aimed to evaluate and discuss the use of an innovative PSI made of porous hydroxyapatite, with interconnected porosity promoting osteointegration, called MyBone Custom® implant (MBCI), for maxillofacial bone reconstruction. A multicentric cohort of 13 patients underwent maxillofacial bone reconstruction surgery using MBCIs for various applications, from genioplasty to orbital floor reconstruction, including zygomatic and mandibular bone reconstruction, both for segmental defects and bone augmentation. The mean follow-up period was 9 months (1-22 months). No infections, displacements, or postoperative fractures were reported. Perioperative modifications of the MBCIs were possible when necessary. Additionally, surgeons reported significant time saved during surgery. For patients with postoperative CT scans, osteointegration signs were visible at the 6-month postoperative follow-up control, and continuous osteointegration was observed after 1 year. The advantages and disadvantages compared with current techniques used are discussed. MBCIs offer new bone reconstruction possibilities with long-term perspectives, while precluding the drawbacks of titanium and PEEK. The low level of postoperative complications associated with the high osteointegration potential of MBCIs paves the way to more extensive use of this new hydroxyapatite PSI in maxillofacial bone reconstruction.


Asunto(s)
Implantes Dentales , Procedimientos de Cirugía Plástica , Humanos , Durapatita/uso terapéutico , Tomografía Computarizada por Rayos X , Órbita
2.
J Funct Biomater ; 14(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38132817

RESUMEN

In biomaterial-based bone tissue engineering, optimizing scaffold structure and composition remains an active field of research. Additive manufacturing has enabled the production of custom designs in a variety of materials. This study aims to improve the design of calcium-phosphate-based additively manufactured scaffolds, the material of choice in oral bone regeneration, by using a combination of in silico and in vitro tools. Computer models are increasingly used to assist in design optimization by providing a rational way of merging different requirements into a single design. The starting point for this study was an in-house developed in silico model describing the in vitro formation of neotissue, i.e., cells and the extracellular matrix they produced. The level set method was applied to simulate the interface between the neotissue and the void space inside the scaffold pores. In order to calibrate the model, a custom disk-shaped scaffold was produced with prismatic canals of different geometries (circle, hexagon, square, triangle) and inner diameters (0.5 mm, 0.7 mm, 1 mm, 2 mm). The disks were produced with three biomaterials (hydroxyapatite, tricalcium phosphate, and a blend of both). After seeding with skeletal progenitor cells and a cell culture for up to 21 days, the extent of neotissue growth in the disks' canals was analyzed using fluorescence microscopy. The results clearly demonstrated that in the presence of calcium-phosphate-based materials, the curvature-based growth principle was maintained. Bayesian optimization was used to determine the model parameters for the different biomaterials used. Subsequently, the calibrated model was used to predict neotissue growth in a 3D gyroid structure. The predicted results were in line with the experimentally obtained ones, demonstrating the potential of the calibrated model to be used as a tool in the design and optimization of 3D-printed calcium-phosphate-based biomaterials for bone regeneration.

3.
Acta Biomater ; 170: 580-595, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673232

RESUMEN

Bone repair is a major challenge in regenerative medicine, e.g. for large defects. There is a need for bioactive, highly percolating bone substitutes favoring bone ingrowth and tissue healing. Here, a modern 3D printing approach (VAT photopolymerization) was exploited to fabricate hydroxyapatite (HA) scaffolds with a Gyroid-"Triply periodic minimal surface" (TPMS) porous structure (65% porosity, 90.5% HA densification) inspired from trabecular bone. Percolation and absorption capacities were analyzed in gaseous and liquid conditions. Mechanical properties relevant to guided bone regeneration in non-load bearing sites, as for maxillofacial contour reconstruction, were evidenced from 3-point bending tests and macrospherical indentation. Scaffolds were implanted in a clinically-relevant large animal model (sheep femur), over 6 months, enabling thorough analyses at short (4 weeks) and long (26 weeks) time points. In vivo performances were systematically compared to the bovine bone-derived Bio-OssⓇ standard. The local tissue response was examined thoroughly by semi-quantitative histopathology. Results demonstrated the absence of toxicity. Bone healing was assessed by bone dynamics analysis through epifluorescence using various fluorochromes and quantitative histomorphometry. Performant bone regeneration was evidenced with similar overall performances to the control, although the Gyroid biomaterial slightly outperformed Bio-OssⓇ at early healing time in terms of osteointegration and appositional mineralization. This work is considered a pilot study on the in vivo evaluation of TPMS-based 3D porous scaffolds in a large animal model, for an extended period of time, and in comparison to a clinical standard. Our results confirm the relevance of such scaffolds for bone regeneration in view of clinical practice. STATEMENT OF SIGNIFICANCE: Bone repair, e.g. for large bone defects or patients with defective vascularization is still a major challenge. Highly percolating TPMS porous structures have recently emerged, but no in vivo data were reported on a large animal model of clinical relevance and comparing to an international standard. Here, we fabricated TPMS scaffolds of HA, determined their chemical, percolation and mechanical features, and ran an in-depth pilot study in the sheep with a systematic comparison to the Bio-OssⓇ reference. Our results clearly show the high bone-forming capability of such scaffolds, with outcomes even better than Bio-OssⓇ at short implantation time. This preclinical work provides quantitative data validating the relevance of such TMPS porous scaffolds for bone regeneration in view of clinical evaluation.

4.
J Biomed Mater Res A ; 108(3): 412-425, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31654476

RESUMEN

Stereolithography (SLA) is an interesting manufacturing technology to overcome limitations of commercially available particulated biomaterials dedicated to intra-oral bone regeneration applications. The purpose of this study was to evaluate the in vitro and in vivo biocompatibility and osteoinductive properties of two calcium-phosphate (CaP)-based scaffolds manufactured by SLA three-dimensional (3D) printing. Pellets and macro-porous scaffolds were manufactured in pure hydroxyapatite (HA) and in biphasic CaP (HA:60-TCP:40). Physico-chemical characterization was performed using micro X-ray fluorescence, scanning electron microscopy (SEM), optical interferometry, and microtomography (µCT) analyses. Osteoblast-like MG-63 cells were used to evaluate the biocompatibility of the pellets in vitro with MTS assay and the cell morphology and growth characterized by SEM and DAPI-actin staining showed similar early behavior. For in vivo biocompatibility, newly formed bone and biodegradability of the experimental scaffolds were evaluated in a subperiosteal cranial rat model using µCT and descriptive histology. The histological analysis has not indicated evidences of inflammation but highlighted close contacts between newly formed bone and the experimental biomaterials revealing an excellent scaffold osseointegration. This study emphasizes the relevance of SLA 3D printing of CaP-based biomaterials for intra-oral bone regeneration even if manufacturing accuracy has to be improved and further experiments using biomimetic scaffolds should be conducted.


Asunto(s)
Materiales Biocompatibles/química , Regeneración Ósea , Fosfatos de Calcio/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/metabolismo , Fosfatos de Calcio/metabolismo , Línea Celular , Supervivencia Celular , Masculino , Ensayo de Materiales , Osteoblastos/citología , Osteoblastos/metabolismo , Ratas Sprague-Dawley , Estereolitografía
5.
Breast Cancer Res ; 11(6): R83, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19906305

RESUMEN

INTRODUCTION: Activator protein-2 (AP-2) alpha and AP-2gamma transcription factors contribute to ERBB2 gene overexpression in breast cancer. In order to understand the mechanism by which the ERBB2 gene is overexpressed we searched for novel AP-2 interacting factors that contribute to its activity. METHODS: Ku proteins were identified as AP-2alpha interacting proteins by glutathione serine transferase (GST)-pull down followed by mass spectrometry. Transfection of the cells with siRNA, expression vectors and reporter vectors as well as chromatin immunoprecipitation (ChIP) assay were used to ascertain the implication of Ku proteins on ERBB2 expression. RESULTS: Nuclear proteins from BT-474 cells overexpressing AP-2alpha and AP-2gamma were incubated with GST-AP2 or GST coated beads. Among the proteins retained specifically on GST-AP2 coated beads Ku70 and Ku80 proteins were identified by mass spectrometry. The contribution of Ku proteins to ERBB2 gene expression in BT-474 and SKBR3 cell lines was investigated by downregulating Ku proteins through the use of specific siRNAs. Depletion of Ku proteins led to downregulation of ERBB2 mRNA and protein levels. Furthermore, reduction of Ku80 in HCT116 cell line decreased the AP-2alpha activity on a reporter vector containing an AP-2 binding site linked to the ERBB2 core promoter, and transfection of Ku80 increased the activity of AP-2alpha on this promoter. Ku siRNAs also inhibited the activity of this reporter vector in BT-474 and SKBR3 cell lines and the activity of the ERBB2 promoter was further reduced by combining Ku siRNAs with AP-2alpha and AP-2gamma siRNAs. ChIP experiments with chromatin extracted from wild type or AP-2alpha and AP-2gamma or Ku70 siRNA transfected BT-474 cells demonstrated Ku70 recruitment to the ERBB2 proximal promoter in association with AP-2alpha and AP-2gamma. Moreover, Ku70 siRNA like AP-2 siRNAs, greatly reduced PolII recruitment to the ERBB2 proximal promoter. CONCLUSIONS: Ku proteins in interaction with AP-2 (alpha and gamma) contribute to increased ERBB2 mRNA and protein levels in breast cancer cells.


Asunto(s)
Antígenos Nucleares/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/metabolismo , Receptor ErbB-2/biosíntesis , Factor de Transcripción AP-2/metabolismo , Antígenos Nucleares/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Autoantígeno Ku , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Receptor ErbB-2/genética , Factor de Transcripción AP-2/genética , Transcripción Genética , Transfección , Regulación hacia Arriba
6.
Cancer Res ; 69(7): 2941-9, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19318561

RESUMEN

EGFR or ERBB2 contributes to prostate cancer (PCa) progression by activating the androgen receptor (AR) in hormone-poor conditions. Here, we investigated the mechanisms by which androgens regulate EGFR and ERBB2 expression in PCa cells. In steroid-depleted medium (SDM), EGFR protein was less abundant in androgen-sensitive LNCaP than in androgen ablation-resistant 22Rv1 cells, whereas transcript levels were similar. Dihydrotestosterone (DHT) treatment increased both EGFR mRNA and protein levels and stimulated RNA polymerase II recruitment to the EGFR gene promoter, whereas it decreased ERBB2 transcript and protein levels in LNCaP cells. DHT altered neither EGFR or ERBB2 levels nor the abundance of prostate-specific antigen (PSA), TMEPA1, or TMPRSS2 mRNAs in 22Rv1 cells, which express the full-length and a shorter AR isoform deleted from the COOH-terminal domain (ARDeltaCTD). The contribution of both AR isoforms to the expression of these genes was assessed by small interfering RNAs targeting only the full-length or both AR isoforms. Silencing of both isoforms strongly reduced PSA, TMEPA1, and TMPRSS2 transcript levels. Inhibition of both AR isoforms did not affect EGFR and ERBB2 transcript levels but decreased EGFR and increased ERBB2 protein levels. Proliferation of 22Rv1 cells in SDM was inhibited in the absence of AR and ARDeltaCTD. A further decrease was obtained with PKI166, an EGFR/ERBB2 kinase inhibitor. Overall, we showed that ARDeltaCTD is responsible for constitutive EGFR expression and ERBB2 repression in 22Rv1 cells and that ARDeltaCTD and tyrosine kinase receptors are necessary for sustained 22Rv1 cell growth.


Asunto(s)
Receptores ErbB/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Receptor ErbB-2/genética , Receptores Androgénicos/genética , Línea Celular Tumoral , Receptores ErbB/biosíntesis , Humanos , Masculino , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Isoformas de Proteínas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor ErbB-2/biosíntesis , Receptores Androgénicos/metabolismo , Transcripción Genética
7.
Breast Cancer Res ; 10(1): R9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18218085

RESUMEN

INTRODUCTION: Overexpression of the ERBB2 oncogene is observed in about 20% of human breast tumors and is the consequence of increased transcription rates frequently associated with gene amplification. Several studies have shown a link between activator protein 2 (AP-2) transcription factors and ERBB2 gene expression in breast cancer cell lines. Moreover, the Yin Yang 1 (YY1) transcription factor has been shown to stimulate AP-2 transcriptional activity on the ERBB2 promoter in vitro. In this report, we examined the relationships between ERBB2, AP-2alpha, and YY1 both in breast cancer tissue specimens and in a mammary cancer cell line. METHODS: ERBB2, AP-2alpha, and YY1 protein levels were analyzed by immunohistochemistry in a panel of 55 primary breast tumors. ERBB2 gene amplification status was determined by fluorescent in situ hybridization. Correlations were evaluated by a chi2 test at a p value of less than 0.05. The functional role of AP-2alpha and YY1 on ERBB2 gene expression was analyzed by small interfering RNA (siRNA) transfection in the BT-474 mammary cancer cell line followed by real-time reverse transcription-polymerase chain reaction and Western blotting. RESULTS: We observed a statistically significant correlation between ERBB2 and AP-2alpha levels in the tumors (p < 0.01). Moreover, associations were found between ERBB2 protein level and the combined high expression of AP-2alpha and YY1 (p < 0.02) as well as between the expression of AP-2alpha and YY1 (p < 0.001). Furthermore, the levels of both AP-2alpha and YY1 proteins were inversely correlated to ERBB2 gene amplification status in the tumors (p < 0.01). Transfection of siRNAs targeting AP-2alpha and AP-2gamma mRNAs in the BT-474 breast cancer cell line repressed the expression of the endogenous ERBB2 gene at both the mRNA and protein levels. Moreover, the additional transfection of an siRNA directed against the YY1 transcript further reduced the ERBB2 protein level, suggesting that AP-2 and YY1 transcription factors cooperate to stimulate the transcription of the ERBB2 gene. CONCLUSION: This study highlights the role of both AP-2alpha and YY1 transcription factors in ERBB2 oncogene overexpression in breast tumors. Our results also suggest that high ERBB2 expression may result either from gene amplification or from increased transcription factor levels.


Asunto(s)
Neoplasias de la Mama/metabolismo , Genes erbB-2/genética , Factor de Transcripción AP-2/biosíntesis , Factor de Transcripción YY1/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Factor de Transcripción AP-2/genética , Factor de Transcripción YY1/genética
8.
Int J Cancer ; 121(12): 2622-7, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17683069

RESUMEN

The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/metabolismo , Proteínas Hedgehog/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal , Factores de Transcripción/genética , Alcaloides de Veratrum/farmacología , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Tomatina/análogos & derivados , Tomatina/farmacología , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína con Dedos de Zinc GLI1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA