Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Spectrosc ; : 37028241263567, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881037

RESUMEN

The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review.

2.
J Biomed Opt ; 20(10): 105007, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26469563

RESUMEN

Hard-tissue ablation was already investigated for a broad variety of pulsed laser systems, which cover almost the entire range of available wavelengths and pulse parameters. Most effective in hard-tissue ablation are Er:YAG and CO2 lasers, both utilizing the effect of absorption of infrared wavelengths by water and so-called explosive vaporization, when a thin water film or water­air spray is supplied. The typical flow rates and the water layer thicknesses are too low for surgical applications where bleeding occurs and wound flushing is necessary. We studied a 20 W ps-laser with 532 nm wavelength and a pulse energy of 1 mJ to effectively ablate bones that are submerged 14 mm under water. For these laser parameters, the plasma-mediated ablation mechanism is dominant. Simulations based on the blow-off model predict the cut depth and cross-sectional shape of the incision. The model is modified considering the cross section of the Gaussian beam, the incident angle, and reflections. The ablation rate amounts to 0.2 mm3/s, corresponding to an increase by at least 50% of the highest values published so far for ultrashort laser ablation of hard tissue.


Asunto(s)
Fémur/cirugía , Inmersión , Terapia por Láser/instrumentación , Rayos Láser , Osteotomía/instrumentación , Agua , Animales , Bovinos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Fémur/patología , Técnicas In Vitro , Modelos Biológicos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Cirugía Asistida por Computador/instrumentación , Cirugía Asistida por Computador/métodos
3.
Anal Chem ; 86(19): 9687-92, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25203225

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) is applied for the inline analysis of liquid slag at a steel works. The slag in the ladle of a slag transporter is measured at a distance of several meters during a short stop of the transporter. The slag surface with temperatures from ≈600 to ≈1400 °C consists of liquid slag and solidified slag parts. Automatic measurements at varying filling levels of the ladle are realized, and the duration amounts to 2 min including data transmission to the host computer. Analytical results of the major components such as CaO, Fe, SiO2, MgO, Mn, and Al2O3 are compared with reference values from the steel works laboratory for solid pressed slag samples as well as for samples from the liquid slag. Stable 24/7 operation during the first three-month test run was achieved.

4.
Appl Spectrosc ; 63(5): 559-63, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19470214

RESUMEN

Ultraviolet (UV) resonance Raman spectroscopy is a promising technique for the detection of trace explosives. For real-world applications, it is necessary to develop data evaluation algorithms that automatically recognize the spectral features of explosives in a sample spectrum. We have developed a robust algorithm that can tolerate high levels of fluorescence background. We successfully demonstrated the detection of traces of ANFO and TNT explosives at surface coverage levels of 55 microg/cm(2) in a blind test experiment. The sensitivity and selectivity is discussed in terms of receiver operating characteristics (ROC) curves.

5.
Anal Bioanal Chem ; 385(2): 214-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16598459
6.
Anal Bioanal Chem ; 385(2): 234-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16570143

RESUMEN

LIBS can be used as an online method of characterizing galvanized coatings on sheet steel moving through a production line. The traversing sheet steel is irradiated with a series of single laser bursts, each at a different position on the sheet steel. An ablation depth in the same range as the coating thickness (about 10 microm) is achieved by using a Nd:YAG laser at 1064 nm in collinear double-pulse mode. The coating thickness is determined from the ratio of the intensities of an iron line and a zinc line measured at a burst energy high enough to penetrate the coating with a single burst. Experiments at different burst energies were carried out to optimize the thickness resolution, and a method of systematically selecting iron and zinc lines was deduced, which is based on multivariate data analysis (MVDA) of the intensity ratios calculated for a set of 6 zinc lines and 21 iron lines. A temperature correction was applied, because the parameters of the plasma change with burst energy, and the influence of this on the thickness resolution is discussed. The ambient atmosphere present (air, Ar, N2) as well as self-absorption of spectral lines both have an influence on the thickness resolution. At optimum conditions, a thickness measurement accuracy of better than 150 nm was obtained for a set of electrolytic galvanized sheet steels with coating thicknesses in the range 4.1-11.2 microm.

7.
Anal Bioanal Chem ; 385(2): 225-33, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16570144

RESUMEN

In this study a new approach to the online monitoring of the Al depth profile of hot-dip galvanised sheet steel is presented, based on laser-induced breakdown spectroscopy (LIBS). The coating composition is measured by irradiating the traversing sheet steel with a series of single laser bursts, each at a different sheet steel position. An ablation depth in the same range as the coating thickness (about 10 microm) is achieved by applying a Nd:YAG laser at 1064 nm in collinear double-pulse and triple-pulse mode. The ablation depth is controlled by adjusting the burst energy with an external electro-optical attenuator. A fingerprint of the depth profile is gained by measuring the LIBS signals from zinc, aluminium and iron as a function of the burst energy, and by post-processing the data obtained. Up to three depths can be sampled simultaneously with a single laser burst by measuring the LIBS signals after each pulse within the laser burst. A concept for continuously monitoring the Al depth profile during the galvanising process is presented and applied to different hot-dip galvanised coatings. The method was tested on rotating sheet steel disks moving at a speed of up to 1 m/s. The potential and limitations of the new method are discussed.

8.
Anal Bioanal Chem ; 385(2): 326-32, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16544129

RESUMEN

The sensitivity of laser-induced breakdown spectroscopy of solid samples depends on the number of ablated and excited analytes. Laser ablation of solid samples can be enhanced by using collinear multiple laser pulses, for example double or triple pulses, rather than single laser pulses with the same total laser pulse energy. The ablation rates and the plasma conditions are affected by the ambient gas. In this study laser ablation was examined by varying the interpulse separation of the multiple pulses, within double and triple-pulse bursts, and the gas mass density at constant gas pressure. Different ambient gases and gas mixtures consisting of argon, oxygen, and nitrogen were used to study their effect on ablation rates. In a pure argon atmosphere (99.999% v/v Ar) the ablation burst number required to penetrate a steel plate of thickness 100 microm is reduced by a factor of approximately six by use of triple-pulse bursts with a symmetric interpulse separation of 15 micros rather than single pulses with the same total burst energy of 105 mJ. For double and single pulses the factors are 1.6 for Ar and 2.8 for synthetic air. Analyte lines are 4 to 8 times more intense if an argon atmosphere, rather than air, is used.

9.
Appl Opt ; 42(30): 6199-204, 2003 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-14594085

RESUMEN

Laser-induced breakdown spectrometry (LIBS) with multiple pulse excitation has been applied for the multielemental analysis of liquid steel. The laser beam and the measuring radiation are guided inside a moveable lance to gain access to the melt surface from the top. Low-alloy steel grades were investigated with a focus on the light elements phosphorus, sulfur, and carbon by use of emission wavelengths in the vacuum ultraviolet. Calibration curves were determined for the elements carbon, phosphorus, sulfur, nickel, and chromium in steel melts of 100 kg. The estimated limits of detection for the light elements phosphorus, sulfur, and carbon are below 21 microg/g for direct analysis of liquid steel with LIBS. The results demonstrate the potential of the laser-based analysis to fulfill the requirements for a process integrated on-line analysis in the secondary metallurgy of steel works.

10.
Appl Opt ; 42(30): 6210-20, 2003 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-14594087

RESUMEN

The use of laser-induced breakdown spectrometry (LIBS) for the analysis of heavy metals and brominated flame retardants in end-of-life waste electric and electronic equipment (EOL-WEEE) pieces is investigated. Single- and double-pulse plasma excitation as well as the influence of detection parameters is studied to yield a parameter field with improved sensitivity and limits of detection. A LIBS analyzer was set up as an on-line measuring unit to detect heavy metals and brominated flame retardants in moving EOL-WEEE pieces in an automatic sorting line. An autofocusing unit with an adjustment range of 50 mm was incorporated to permit measurements of objects that pass by a LIBS analyzer with their surfaces at various distances from it. Tests with EOL-WEEE monitor housings on the conveyor belt of a pilot sorting system successfully demonstrated the capability of the LIBS analyzer to quantify the concentration of hazardous elements in real waste EOL-WEEE pieces.

11.
Appl Opt ; 42(30): 6221-5, 2003 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-14594088

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) was applied for simultaneous measurement of the elements C, H, N, and O in CO2-air, C3H8-CO2, and C3H8-N2 gas mixtures at atmospheric pressure. A single 7-mm-diameter aperture at the sample chamber was used for 1064-nm Nd:YAG laser irradiation and plasma signal output to an echelle spectrometer. Double-pulse laser bursts of approximately 8-ns pulse width (FWHM) and 250-ns interpulse separation were applied to increase the plasma signal. Calibration curves of the LIBS signal versus the partial pressure or the atomic abundance ratios were taken by dilution series in intervals that are relevant in the combustion of heptane (C7H16) near an equivalence ratio of 1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA