Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 44(1)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38088444

RESUMEN

ß-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of ß-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via ß-glucans. ß-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of ß-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal ß-glucans, as well as their application.


Asunto(s)
beta-Glucanos , Humanos , beta-Glucanos/uso terapéutico , Fagocitosis , Neutrófilos , Macrófagos/metabolismo , Citocinas/metabolismo
2.
Hum Cell ; 37(1): 139-153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924488

RESUMEN

According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/patología , MicroARNs/genética , Autofagia/genética
3.
J Biomol Struct Dyn ; : 1-18, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975411

RESUMEN

Protein aggregation is a biological process that occurs when proteins misfold. Misfolding and aggregation of human superoxide dismutase (hSOD1) cause a neurodegenerative disease called amyotrophic lateral sclerosis (ALS). Among the mutations occurring, targeting the E21K mutation could be a good choice to understand the pathological mechanism of SOD1 in ALS, whereof it significantly reduces life hopefulness in patients. Naturally occurring polyphenolic flavonoids have been suggested as a way to alleviate the amyloidogenic behavior of proteins. In this study, computational tools were used to identify promising flavonoid compounds that effectively inhibit the pathogenic behavior of the E21K mutant. Initial screening identified Pelargonidin, Curcumin, and Silybin as promising leads. Molecular dynamics (MD) simulations showed that the binding of flavonoids to the mutated SOD1 caused changes in the protein stability, hydrophobicity, flexibility, and restoration of lost hydrogen bonds. Secondary structure analysis indicated that the protein destabilization and the increased propensity of ß-sheet caused by the mutation were restored to the wild-type state upon binding of flavonoids. Free energy landscape (FEL) analysis was also used to differentiate aggregation, and results showed that Silybin followed by Pelargonidin had the most therapeutic efficacy against the E21K mutant SOD1. Therefore, these flavonoids hold great potential as highly effective inhibitors in mitigating ALS's fatal and insuperable effects.Communicated by Ramaswamy H. Sarma.

5.
Oral Oncol ; 144: 106483, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37421672

RESUMEN

Numerous studies have revealed that cancer patients are more likely to develop severe Coronavirus disease-2019 (COVID-19), which can cause mortality, as well as cancer progression and treatment failure. Among these patients who may be particularly vulnerable to severe COVID-19 and COVID-19-associated cancer progression are those with oral squamous cell carcinoma (OSCC). In this regard, therapeutic approaches must be developed to lower the risk of cancer development, chemo-resistance, tumor recurrence, and death in OSCC patients with COVID-19. It may be helpful to comprehend the cellular and molecular mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to these problems. In this line, in this review, we described the potential cellular and molecular mechanisms that SARS-CoV-2 can exert its role and based on them pharmacological targeted therapies were suggested. However, in this study, we encourage more investigations in the future to uncover other cellular and molecular mechanisms of action of SARS-CoV-2 to develop beneficial therapeutic strategies for such patients.


Asunto(s)
COVID-19 , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , SARS-CoV-2 , Carcinoma de Células Escamosas de Cabeza y Cuello , Recurrencia Local de Neoplasia/epidemiología
6.
Inflammopharmacology ; 31(3): 1029-1052, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37079169

RESUMEN

According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as ß cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.


Asunto(s)
COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Inflamación , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...