Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 8(1): 28, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33518709

RESUMEN

Breeding apple cultivars with resistance offers a potential solution to fire blight, a damaging bacterial disease caused by Erwinia amylovora. Most resistance alleles at quantitative trait loci (QTLs) were previously characterized in diverse Malus germplasm with poor fruit quality, which reduces breeding utility. This study utilized a pedigree-based QTL analysis approach to elucidate the genetic basis of resistance/susceptibility to fire blight from multiple genetic sources in germplasm relevant to U.S. apple breeding programs. Twenty-seven important breeding parents (IBPs) were represented by 314 offspring from 32 full-sib families, with 'Honeycrisp' being the most highly represented IBP. Analyzing resistance/susceptibility data from a two-year replicated field inoculation study and previously curated genome-wide single nucleotide polymorphism data, QTLs were consistently mapped on chromosomes (Chrs.) 6, 7, and 15. These QTLs together explained ~28% of phenotypic variation. The Chr. 6 and Chr. 15 QTLs colocalized with previously reported QTLs, while the Chr. 7 QTL is possibly novel. 'Honeycrisp' inherited a rare reduced-susceptibility allele at the Chr. 6 QTL from its grandparent 'Frostbite'. The highly resistant IBP 'Enterprise' had at least one putative reduced-susceptibility allele at all three QTLs. In general, lower susceptibility was observed for individuals with higher numbers of reduced-susceptibility alleles across QTLs. This study highlighted QTL mapping and allele characterization of resistance/susceptibility to fire blight in complex pedigree-connected apple breeding germplasm. Knowledge gained will enable more informed parental selection and development of trait-predictive DNA tests for pyramiding favorable alleles and selection of superior apple cultivars with resistance to fire blight.

2.
Phytopathology ; 110(7): 1305-1311, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32175827

RESUMEN

Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a persistent problem for pear (Pyrus spp.) growers in the United States. Growing resistant cultivars is one of the best options for managing fire blight. The cultivars Potomac and Old Home and the selection NJA2R59T69 display resistance to fire blight. As such, three mapping populations (El Dorado × Potomac, Old Home × Bartlett, and NJA2R59T69 × Bartlett) were developed to identify genomic regions associated with resistance to fire blight. Progeny were phenotyped during 2017 and 2018 by inoculating multiple actively growing shoots of field-grown seedling trees with E. amylovora isolate E153n via the cut-leaf method. Genotyping was conducted using the recently developed Axiom Pear 70 K Genotyping Array and chromosomal linkage groups were created for each population. An integrated two-way pseudo-testcross approach was used to map quantitative trait loci (QTLs). Resistance QTLs were identified on chromosome 2 for each population. The QTLs identified in the El Dorado × Potomac and Old Home × Bartlett populations are in the same region as QTLs that were previously identified in Harrow Sweet and Moonglow. The QTL in NJA2R59T69 mapped proximally to the previously identified QTLs and originated from an unknown Asian or occidental source. Future research will focus on further characterizing the resistance regions and developing tools for DNA-informed breeding.


Asunto(s)
Erwinia amylovora , Pyrus , Ligamiento Genético , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo
3.
Mol Plant Pathol ; 19(5): 1090-1103, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28756640

RESUMEN

Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen.


Asunto(s)
Arabidopsis/citología , Arabidopsis/microbiología , Resistencia a la Enfermedad , Erwinia amylovora/fisiología , Glucanos/metabolismo , Enfermedades de las Plantas/microbiología , Transducción de Señal , Arabidopsis/inmunología , Proliferación Celular , Ciclopentanos/metabolismo , Etilenos/metabolismo , Iones , Mutación/genética , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo
4.
PLoS One ; 12(3): e0172949, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257442

RESUMEN

Blue mold caused by Penicillium expansum is the most important postharvest disease of apple worldwide and results in significant financial losses. There are no defined sources of resistance to blue mold in domesticated apple. However, resistance has been described in wild Malus sieversii accessions, including plant introduction (PI)613981. The objective of the present study was to identify the genetic loci controlling resistance to blue mold in this accession. We describe the first quantitative trait loci (QTL) reported in the Rosaceae tribe Maleae conditioning resistance to P. expansum on genetic linkage group 3 (qM-Pe3.1) and linkage group 10 (qM-Pe10.1). These loci were identified in a M.× domestica 'Royal Gala' X M. sieversii PI613981 family (GMAL4593) based on blue mold lesion diameter seven days post-inoculation in mature, wounded apple fruit inoculated with P. expansum. Phenotypic analyses were conducted in 169 progeny over a four year period. PI613981 was the source of the resistance allele for qM-Pe3.1, a QTL with a major effect on blue mold resistance, accounting for 27.5% of the experimental variability. The QTL mapped from 67.3 to 74 cM on linkage group 3 of the GMAL4593 genetic linkage map. qM-Pe10.1 mapped from 73.6 to 81.8 cM on linkage group 10. It had less of an effect on resistance, accounting for 14% of the experimental variation. 'Royal Gala' was the primary contributor to the resistance effect of this QTL. However, resistance-associated alleles in both parents appeared to contribute to the least square mean blue mold lesion diameter in an additive manner at qM-Pe10.1. A GMAL4593 genetic linkage map composed of simple sequence repeats and 'Golden Delicious' single nucleotide polymorphism markers was able to detect qM-Pe10.1, but failed to detect qM-Pe3.1. The subsequent addition of genotyping-by-sequencing markers to the linkage map provided better coverage of the PI613981 genome on linkage group 3 and facilitated discovery of qM-Pe3.1. A DNA test for qM-Pe3.1 has been developed and is currently being evaluated for its ability to predict blue mold resistance in progeny segregating for qM-Pe3.1. Due to the long juvenility of apple, the availability of a DNA test to screen for the presence of qM-Pe3.1 at the seedling stage will greatly improve efficiency of breeding apple for blue mold resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma de Planta , Genotipo , Malus/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Frutas/genética , Frutas/inmunología , Frutas/microbiología , Ligamiento Genético , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Malus/inmunología , Malus/microbiología , Repeticiones de Microsatélite , Penicillium/patogenicidad , Penicillium/fisiología , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
5.
Plant Dis ; 101(10): 1738-1745, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30676925

RESUMEN

Fire blight (Erwinia amylovora) is a devastating bacterial disease in apple that results in severe economic losses. Epidemics are becoming more common as susceptible cultivars and rootstocks are being planted, and control is becoming more difficult as antibiotic-resistant strains develop. Resistant germplasm currently being utilized by breeding programs tend to have small fruit size and poor flavor characteristics. Malus sieversii, a progenitor species of domestic apple, is notable for its relatively large, palatable fruit and some accessions have been reported to be resistant to fire blight. In this study, nearly 200 accessions of M. sieversii and appropriate controls were inoculated with E. amylovora in both Washington and West Virginia to identify fire blight resistant accessions. Twelve accessions were identified with resistance comparable to highly resistant and resistant controls. Several accessions exhibited a unique resistance response, not previously reported in domestic apple (M. × domestica), characterized by low incidence of infection but high severity once infection was initiated. Several of these M. sieversii accessions will be used as parents in future crosses in the Washington State University apple breeding program.


Asunto(s)
Resistencia a la Enfermedad , Erwinia amylovora , Malus , Resistencia a la Enfermedad/genética , Erwinia amylovora/fisiología , Malus/microbiología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Washingtón , West Virginia
6.
Hortic Res ; 3: 16006, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26981253

RESUMEN

The C-repeat binding factor (CBF) transcription factor is involved in responses to low temperature and water deficit in many plant species. Overexpression of CBF genes leads to enhanced freezing tolerance and growth inhibition in many species. The overexpression of a peach CBF (PpCBF1) gene in a transgenic line of own-rooted apple (Malus×domestica) M.26 rootstock (T166) trees was previously reported to have additional effects on the onset of dormancy and time of spring budbreak. In the current study, the commercial apple cultivar 'Royal Gala' (RG) was grafted onto either non-transgenic M.26 rootstocks (RG/M.26) or transgenic M.26 (T166) rootstocks (RG/T166) and field grown for 3 years. No PpCBF1 transcript was detected in the phloem or cambium of RG scions grafted on T166 rootstocks indicating that no graft transmission of transgene mRNA had occurred. In contrast to own-rooted T166 trees, no impact of PpCBF1 overexpression in T166 rootstocks was observed on the onset of dormancy, budbreak or non-acclimated leaf-cold hardiness in RG/T166 trees. Growth, however, as measured by stem caliper, current-year shoot extension and overall height, was reduced in RG/T166 trees compared with RG/M.26 trees. Although flowering was evident in both RG/T166 and RG/M.26 trees in the second season, the number of trees in flower, the number of shoots bearing flowers, and the number of flower clusters per shoot was significantly higher in RG/M.26 trees than RG/T166 trees in both the second and third year after planting. Elevated levels of RGL (DELLA) gene expression were observed in RG/T166 trees and T166 trees, which may play a role in the reduced growth observed in these tree types. A model is presented indicating how CBF overexpression in a rootstock might influence juvenility and flower abundance in a grafted scion.

7.
BMC Plant Biol ; 14: 182, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25004790

RESUMEN

BACKGROUND: Individual plants adapt to their immediate environment using a combination of biochemical, morphological and life cycle strategies. Because woody plants are long-lived perennials, they cannot rely on annual life cycle strategies alone to survive abiotic stresses. In this study we used suppression subtractive hybridization to identify genes both up- and down-regulated in roots during water deficit treatment and recovery. In addition we followed the expression of select genes in the roots, leaves, bark and xylem of 'Royal Gala' apple subjected to a simulated drought and subsequent recovery. RESULTS: In agreement with studies from both herbaceous and woody plants, a number of common drought-responsive genes were identified, as well as a few not previously reported. Three genes were selected for more in depth analysis: a high affinity nitrate transporter (MdNRT2.4), a mitochondrial outer membrane translocase (MdTOM7.1), and a gene encoding an NPR1 homolog (MpNPR1-2). Quantitative expression of these genes in apple roots, bark and leaves was consistent with their roles in nutrition and defense. CONCLUSIONS: Additional genes from apple roots responding to drought were identified using suppression subtraction hybridization compared to a previous EST analysis from the same organ. Genes up- and down-regulated during drought recovery in roots were also identified. Elevated levels of a high affinity nitrate transporter were found in roots suggesting that nitrogen uptake shifted from low affinity transport due to the predicted reduction in nitrate concentration in drought-treated roots. Suppression of a NPR1 gene in leaves of drought-treated apple trees may explain in part the increased disease susceptibility of trees subjected to dehydrative conditions.


Asunto(s)
Genes de Plantas , Malus/genética , Raíces de Plantas/fisiología , Agua/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Malus/fisiología , Raíces de Plantas/genética
8.
Tree Physiol ; 33(8): 866-77, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23956128

RESUMEN

CBF (C-repeat Binding Factor) transcription factors are part of the AP2/ERF (Apetala2-ethylene responsive factor) domain family of DNA-binding proteins that recognize a C-repeat response cis-acting element that regulates a number of cold-responsive genes (CBF regulon). Induction of CBF gene expression by low temperature in Arabidopsis has been shown to be gated by a circadian clock. In peach (Prunus persica L.), five CBF genes are arranged in tandem on scaffold (linkage group) 5 of the peach genome. Since CBF gene regulation has been shown to be more complex in woody plants than herbaceous plants, the present study was conducted to determine if temperature-modulated CBF gene expression in peach leaf and bark tissues was also influenced by a circadian clock. One-year-old 'Loring' peach trees grafted on 'Bailey' rootstocks were entrained to a 12-h day/12-h night photoperiod at 25 °C. After 2 weeks, trees were exposed to 4 °C under continuous light for up to 48 h beginning at either subjective dawn + 4 h (ZT4; where ZT is Zeitgeber time) or subjective dawn + 16 h (ZT16) with leaf and bark tissues harvested at various time points. Gene expression of the five peach CBF genes and a DREB2 gene was assessed by real-time quantitative polymerase chain reaction. Results revealed a distinct gating of CBF gene expression by a circadian clock for four CBF genes in both leaf and bark tissues. CBF genes were highly induced by 4 °C in ZT4 leaf samples with expression peaking at 6-24 h depending on the specific CBF gene. In contrast, CBF gene expression was highly attenuated in leaf, and to a lesser extent in bark, samples exposed to 4 °C at ZT16. These results are similar to reports for Arabidopsis. Further experiments were conducted to verify environmental influence on the induction of CBF and DREB2 genes. In contrast to DREB2 genes from other dicots, the peach DREB2 ortholog was induced by both low temperature and dehydration. Induction of the peach CBFs and DREB2 by either low temperature or dehydration corresponded with regulatory motifs present in their promoter sequences. Low temperature and dehydration induction data for three peach dehydrin genes indicated that the regulation of these genes in peach is complex, with individual dehydrin gene expression being correlated with the expression of one or more CBF genes.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Prunus/genética , Aclimatación , Secuencia de Aminoácidos , Secuencia de Bases , Frío , Biología Computacional , Corteza de la Planta/genética , Corteza de la Planta/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Prunus/fisiología , Alineación de Secuencia , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Annu Rev Phytopathol ; 50: 475-94, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22702352

RESUMEN

The enterobacterial phytopathogen Erwinia amylovora causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that typically leads to resistance in an incompatible host-pathogen interaction, yet no gene-for-gene resistance has been described for this host-pathogen system. Comparative genomic analysis has found an unprecedented degree of genetic uniformity among strains of E. amylovora, suggesting that the pathogen has undergone a recent genetic bottleneck. The genome of apple, an important host of E. amylovora, has been sequenced, creating new opportunities for the study of interactions between host and pathogen during fire blight development and for the identification of resistance genes. This review includes recent advances in the genomics of both host and pathogen.


Asunto(s)
Erwinia amylovora/genética , Genómica , Malus/microbiología , Enfermedades de las Plantas/microbiología , Rosaceae/microbiología , Erwinia amylovora/patogenicidad , Erwinia amylovora/fisiología , Genes Bacterianos/genética , Genes de Plantas/genética , Interacciones Huésped-Patógeno , Malus/genética , Rosaceae/genética , Virulencia
10.
BMC Genet ; 13: 25, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22471693

RESUMEN

BACKGROUND: Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus 'Robusta 5'. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. RESULTS: When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with 'Robusta 5' as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand 'Malling 9' X 'Robusta 5' population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein (MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German 'Idared' X 'Robusta 5' population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene (HSP90). In the US 'Otawa3' X 'Robusta5' population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations. CONCLUSIONS: The results suggest that the upper region of 'Robusta 5' linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Mapping markers derived from putative fire blight resistance genes has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Erwinia amylovora , Malus/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Malus/inmunología , Enfermedades de las Plantas/inmunología
11.
BMC Biotechnol ; 10: 41, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20525262

RESUMEN

BACKGROUND: Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. The future use of transformed trees on a commercial basis depends upon thorough evaluation of the potential environmental and public health risk of the modified plants, transgene stability over a prolonged period of time and the effect of the gene on tree and fruit characteristics. We studied the stability of expression and the effect on resistance to the fire blight disease of the lytic protein gene, attacin E, in the apple cultivar 'Galaxy' grown in the field for 12 years. RESULTS: Using Southern and western blot analysis, we compared transgene copy number and observed stability of expression of this gene in the leaves and fruit in several transformed lines during a 12 year period. No silenced transgenic plant was detected. Also the expression of this gene resulted in an increase in resistance to fire blight throughout 12 years of orchard trial and did not affect fruit shape, size, acidity, firmness, weight or sugar level, tree morphology, leaf shape or flower morphology or color compared to the control. CONCLUSION: Overall, these results suggest that transgene expression in perennial species, such as fruit trees, remains stable in time and space, over extended periods and in different organs. This report shows that it is possible to improve a desirable trait in apple, such as the resistance to a pathogen, through genetic engineering, without adverse alteration of fruit characteristics and tree shape.


Asunto(s)
Proteínas de Insectos/metabolismo , Malus/genética , Transgenes , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Dosificación de Gen , Expresión Génica , Inmunidad Innata , Proteínas de Insectos/genética , Malus/inmunología , Malus/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Ploidias
12.
Planta ; 230(1): 107-18, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19360436

RESUMEN

Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5' rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5' leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.


Asunto(s)
Frutas/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Prunus/genética , Análisis por Conglomerados , Frío , ADN de Plantas/química , ADN de Plantas/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Corteza de la Planta/genética , Proteínas de Plantas/clasificación , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Prunus/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estaciones del Año , Análisis de Secuencia de ADN , TATA Box/genética , Temperatura , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...