Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Magn Reson Med ; 92(4): 1471-1483, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38726472

RESUMEN

PURPOSE: To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. METHODS: Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. RESULTS: Data from 26 males and 36 females with a median age of 43 y (range: 20-69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = -0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = -0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. CONCLUSION: Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Anciano , Pulmón/diagnóstico por imagen , Adulto Joven , Intercambio Gaseoso Pulmonar , Factores Sexuales , Factores de Edad , Mediciones del Volumen Pulmonar , Eritrocitos
2.
ERJ Open Res ; 9(4)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37650085

RESUMEN

Background: Hyperpolarised 129-xenon (129Xe) magnetic resonance imaging (MRI) shows promise in monitoring the progression of idiopathic pulmonary fibrosis (IPF) due to the lack of ionising radiation and the ability to quantify functional impairment. Diffusion-weighted (DW)-MRI with hyperpolarised gases can provide information about lung microstructure. The aims were to compare 129Xe DW-MRI measurements with pulmonary function tests (PFTs), and to assess whether they can detect early signs of disease progression in patients with newly diagnosed IPF. Methods: This is a prospective, single-centre, observational imaging study of patients presenting with IPF to Northern General Hospital (Sheffield, UK). Hyperpolarised 129Xe DW-MRI was performed at 1.5 T on a whole-body General Electric HDx scanner and PFTs were performed on the same day as the MRI scan. Results: There was an increase in global 129Xe apparent diffusion coefficient (ADC) between the baseline and 12-month visits (mean 0.043 cm2·s-1, 95% CI 0.040-0.047 cm2·s-1 versus mean 0.045 cm2·s-1, 95% CI 0.040-0.049 cm2·s-1; p=0.044; n=20), with no significant change in PFTs over the same time period. There was also an increase in 129Xe ADC in the lower zone (p=0.027), and an increase in 129Xe mean acinar dimension in the lower zone (p=0.033) between the baseline and 12-month visits. 129Xe DW-MRI measurements correlated strongly with diffusing capacity of the lung for carbon monoxide (% predicted), transfer coefficient of the lung for carbon monoxide (KCO) and KCO (% predicted). Conclusions: 129Xe DW-MRI measurements appear to be sensitive to early changes of microstructural disease that are consistent with progression in IPF at 12 months. As new drug treatments are developed, the ability to quantify subtle changes using 129Xe DW-MRI could be particularly valuable.

3.
Sci Rep ; 13(1): 11273, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438406

RESUMEN

Functional lung imaging modalities such as hyperpolarized gas MRI ventilation enable visualization and quantification of regional lung ventilation; however, these techniques require specialized equipment and exogenous contrast, limiting clinical adoption. Physiologically-informed techniques to map proton (1H)-MRI ventilation have been proposed. These approaches have demonstrated moderate correlation with hyperpolarized gas MRI. Recently, deep learning (DL) has been used for image synthesis applications, including functional lung image synthesis. Here, we propose a 3D multi-channel convolutional neural network that employs physiologically-informed ventilation mapping and multi-inflation structural 1H-MRI to synthesize 3D ventilation surrogates (PhysVENeT). The dataset comprised paired inspiratory and expiratory 1H-MRI scans and corresponding hyperpolarized gas MRI scans from 170 participants with various pulmonary pathologies. We performed fivefold cross-validation on 150 of these participants and used 20 participants with a previously unseen pathology (post COVID-19) for external validation. Synthetic ventilation surrogates were evaluated using voxel-wise correlation and structural similarity metrics; the proposed PhysVENeT framework significantly outperformed conventional 1H-MRI ventilation mapping and other DL approaches which did not utilize structural imaging and ventilation mapping. PhysVENeT can accurately reflect ventilation defects and exhibits minimal overfitting on external validation data compared to DL approaches that do not integrate physiologically-informed mapping.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Respiración , Imagen por Resonancia Magnética , Protones , Pulmón/diagnóstico por imagen
4.
Chest ; 164(3): 700-716, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36965765

RESUMEN

BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization? STUDY DESIGN AND METHODS: Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022. The imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange. RESULTS: Nine patients were recruited (age 57 ± 14 [median ± interquartile range] years; six of nine patients were male). Patients underwent MRI at 6 (n = 9), 12 (n = 9), 25 (n = 6), and 51 (n = 8) weeks following hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data (n = 6) showed an increase in both pulmonary blood volume and flow compared with 6 weeks, although this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas transfer remained abnormally low at weeks 12, 25, and 51. INTERPRETATION: 129Xe gas transfer was impaired up to 1 year following hospitalization in patients who were hospitalized with COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.


Asunto(s)
COVID-19 , Isótopos de Xenón , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Femenino , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen
5.
Magn Reson Med ; 89(6): 2217-2226, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744585

RESUMEN

PURPOSE: Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS: Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS: High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION: Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Isótopos de Xenón/química , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Xenón , Imagenología Tridimensional/métodos
6.
Am J Respir Crit Care Med ; 207(1): 89-100, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972833

RESUMEN

Rationale: Preterm birth is associated with low lung function in childhood, but little is known about the lung microstructure in childhood. Objectives: We assessed the differential associations between the historical diagnosis of bronchopulmonary dysplasia (BPD) and current lung function phenotypes on lung ventilation and microstructure in preterm-born children using hyperpolarized 129Xe ventilation and diffusion-weighted magnetic resonance imaging (MRI) and multiple-breath washout (MBW). Methods: Data were available from 63 children (aged 9-13 yr), including 44 born preterm (⩽34 weeks' gestation) and 19 term-born control subjects (⩾37 weeks' gestation). Preterm-born children were classified, using spirometry, as prematurity-associated obstructive lung disease (POLD; FEV1 < lower limit of normal [LLN] and FEV1/FVC < LLN), prematurity-associated preserved ratio of impaired spirometry (FEV1 < LLN and FEV1/FVC ⩾ LLN), preterm-(FEV1 ⩾ LLN) and term-born control subjects, and those with and without BPD. Ventilation heterogeneity metrics were derived from 129Xe ventilation MRI and SF6 MBW. Alveolar microstructural dimensions were derived from 129Xe diffusion-weighted MRI. Measurements and Main Results: 129Xe ventilation defect percentage and ventilation heterogeneity index were significantly increased in preterm-born children with POLD. In contrast, mean 129Xe apparent diffusion coefficient, 129Xe apparent diffusion coefficient interquartile range, and 129Xe mean alveolar dimension interquartile range were significantly increased in preterm-born children with BPD, suggesting changes of alveolar dimensions. MBW metrics were all significantly increased in the POLD group compared with preterm- and term-born control subjects. Linear regression confirmed the differential effects of obstructive disease on ventilation defects and BPD on lung microstructure. Conclusion: We show that ventilation abnormalities are associated with POLD, and BPD in infancy is associated with abnormal lung microstructure.


Asunto(s)
Displasia Broncopulmonar , Nacimiento Prematuro , Recién Nacido , Humanos , Femenino , Pulmón/diagnóstico por imagen , Pruebas de Función Respiratoria , Displasia Broncopulmonar/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
7.
Radiologie (Heidelb) ; 62(6): 475-485, 2022 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-35403905

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) is a noninvasive technique that provides excellent contrast for soft tissue organs. However, due to the low density of protons and many air-tissue junctions, its application in the lung is limited. Thus, X­ray-based methods are often used here (with the well-known disadvantages of ionizing radiation). OBJECTIVES: In this review, we discuss pulmonary MRI with hyperpolarized xenon-129 (Xe-MRI). Xe-MRI provides unique valuable insights into lung microstructure and function, including gas exchange with red blood cells-parameters not accessible by any standard clinical methods. METHODS: By magnetic labelling, i.e. hyperpolarization, the signal from xenon-129 is amplified by up to 100,000 times. In this process, electrons from rubidium are first polarized to 100% using laser light and then transferred to xenon by collisions. Then the hyperpolarized gas is brought to the patient in a bag and inhaled shortly before the MRI scan. RESULTS: Using special programming (sequences) of the MRI, the ventilation, microstructure, or gas exchange of the lungs, can be displayed in 3D. This allows, for example, quantitative visualization of ventilation defects, alveolar size, tissue gas uptake and gas transfer to the blood. CONCLUSIONS: Xe-MRI provides unique information about the state of the lung-noninvasively, in vivo and in less than a minute.


Asunto(s)
Pulmón , Xenón , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Respiración
8.
Br J Radiol ; 95(1132): 20210872, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100003

RESUMEN

OBJECTIVES: Design and build a portable xenon-129 (129Xe) hyperpolariser for clinically accessible 129Xe lung MRI. METHODS: The polariser system consists of six main functional components: (i) a laser diode array and optics; (ii) a B0 coil assembly; (iii) an oven containing an optical cell; (iv) NMR and optical spectrometers; (v) a gas-handling manifold; and (vi) a cryostat within a permanent magnet. All components run without external utilities such as compressed air or three-phase electricity, and require just three mains sockets for operation. The system can be manually transported in a lightweight van and rapidly installed on a small estates footprint in a hospital setting. RESULTS: The polariser routinely provides polarised 129Xe for routine clinical lung MRI. To test the concept of portability and rapid deployment, it was transported 200 km, installed at a hospital with no previous experience with the technology and 129Xe MR images of a diagnostic quality were acquired the day after system transport and installation. CONCLUSION: This portable 129Xe hyperpolariser system could form the basis of a cost-effective platform for wider clinical dissemination and multicentre evaluation of 129Xe lung MR imaging. ADVANCES IN KNOWLEDGE: Our work successfully demonstrates the feasibility of multicentre clinical 129Xe MRI with a portable hyperpolariser system.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética
9.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615208

RESUMEN

Accurate knowledge of the rubidium (Rb) vapor density, [Rb], is necessary to correctly model the spin dynamics of 129Xe-Rb spin-exchange optical pumping (SEOP). Here we present a systematic evaluation of [Rb] within a high-throughput 129Xe-Rb hyperpolarizer during continuous-flow SEOP. Near-infrared (52S1/2→52P1/2 (D1)/52P3/2 (D2)) and violet (52S1/2→62P1/2/62P3/2) atomic absorption spectroscopy was used to measure [Rb] within 3.5 L cylindrical SEOP cells containing different spatial distributions and amounts of Rb metal. We were able to quantify deviation from the Beer-Lambert law at high optical depth for D2 and 62P3/2 absorption by comparison with measurements of the D1 and 62P1/2 absorption lines, respectively. D2 absorption deviates from the Beer-Lambert law at [Rb]D2>4×1017 m−3 whilst 52S1/2→62P3/2 absorption deviates from the Beer-Lambert law at [Rb]6P3/2>(4.16±0.01)×1019 m−3. The measured [Rb] was used to estimate a 129Xe-Rb spin exchange cross section of γ'=(1.2±0.1)×10−21 m3 s−1, consistent with spin-exchange cross sections from the literature. Significant [Rb] heterogeneity was observed in a SEOP cell containing 1 g of Rb localized at the back of the cell. While [Rb] homogeneity was improved for a greater surface area of the Rb source distribution in the cell, or by using a Rb presaturator, the measured [Rb] was consistently lower than that predicted by saturation Rb vapor density curves. Efforts to optimize [Rb] and thermal management within spin polarizer systems are necessary to maximize potential future enhancements of this technology.


Asunto(s)
Rubidio , Isótopos de Xenón , Isótopos de Xenón/química , Espectroscopía de Resonancia Magnética/métodos , Rubidio/química , Temperatura
10.
Sci Rep ; 11(1): 4721, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633165

RESUMEN

Enlargements of distal airspaces can indicate pathological changes in the lung, but accessible and precise techniques able to measure these regions are lacking. Airspace Dimension Assessment with inhaled nanoparticles (AiDA) is a new method developed for in vivo measurement of distal airspace dimensions. The aim of this study was to benchmark the AiDA method against quantitative measurements of distal airspaces from hyperpolarised 129Xe diffusion-weighted (DW)-lung magnetic resonance imaging (MRI). AiDA and 129Xe DW-MRI measurements were performed in 23 healthy volunteers who spanned an age range of 23-70 years. The relationship between the 129Xe DW-MRI and AiDA metrics was tested using Spearman's rank correlation coefficient. Significant correlations were observed between AiDA distal airspace radius (rAiDA) and mean 129Xe apparent diffusion coefficient (ADC) (p < 0.005), distributed diffusivity coefficient (DDC) (p < 0.001) and distal airspace dimension (LmD) (p < 0.001). A mean bias of - 1.2 µm towards rAiDA was observed between 129Xe LmD and rAiDA, indicating that rAiDA is a measure of distal airspace dimension. The AiDA R0 intercept correlated with MRI 129Xe α (p = 0.02), a marker of distal airspace heterogeneity. This study demonstrates that AiDA has potential to characterize the distal airspace microstructures and may serve as an alternative method for clinical examination of the lungs.


Asunto(s)
Pulmón/patología , Nanopartículas/análisis , Administración por Inhalación , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nanopartículas/administración & dosificación , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Adulto Joven
11.
Prog Nucl Magn Reson Spectrosc ; 122: 42-62, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33632417

RESUMEN

Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Pulmón/diagnóstico por imagen , Espectroscopía de Resonancia Magnética
12.
Magn Reson Med ; 85(6): 2939-2949, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33458859

RESUMEN

PURPOSE: This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129 Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129 Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129 Xe dissolved in cerebral blood under exchange with depolarized 129 Xe dissolved in gray matter under equilibrium of concentration. THEORY AND METHODS: Time-resolved MR spectra of hyperpolarized 129 Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129 Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129 Xe T1 dependence upon blood oxygenation was applied. 129 Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. RESULTS: For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. CONCLUSION: In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129 Xe from cerebral blood to gray matter in the human brain.


Asunto(s)
Barrera Hematoencefálica , Isótopos de Xenón , Barrera Hematoencefálica/diagnóstico por imagen , Humanos , Pulmón , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Xenón
13.
Magn Reson Med ; 85(3): 1561-1570, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32926448

RESUMEN

PURPOSE: To measure the transverse relaxation time ( T 2 ∗ ) and apparent diffusion coefficient (ADC) of 19 F-C3 F8 gas in vivo in human lungs at 1.5T and 3T, and to determine the representative distribution of values of these parameters in a cohort of healthy volunteers. METHODS: Mapping of ADC at lung inflation levels of functional residual capacity (FRC) and total lung capacity (TLC) was performed with inhaled 19 F-C3 F8 (eight subjects) and 129 Xe (six subjects) at 1.5T. T 2 ∗ mapping with 19 F-C3 F8 was performed at 1.5T (at FRC and TLC) for 8 subjects and at 3T (at TLC for seven subjects). RESULTS: At both FRC and TLC, the 19 F-C3 F8 ADC was smaller than the free diffusion coefficient demonstrating airway microstructural diffusion restriction. From FRC to TLC, the mean ADC significantly increased from 1.56 mm2 /s to 1.83 mm2 /s (P = .0017) for 19 F-C3 F8, and from 2.49 mm2 /s to 3.38 mm2 /s (P = .0015) for 129 Xe. The posterior-to-anterior gradient in ADC for FRC versus TLC in the superior half of the lungs was measured as 0.0308 mm2 /s per cm versus 0.0168 mm2 /s per cm for 19 F-C3 F8 and 0.0871 mm2 /s per cm versus 0.0326 mm2 /s per cm for 129 Xe. A consistent distribution of 19 F-C3 F8 T 2 ∗ values was observed in the lungs, with low values observed near the diaphragm and large pulmonary vessels. The mean T 2 ∗ across volunteers was 4.48 ms at FRC and 5.33 ms at TLC for 1.5T, and 3.78 ms at TLC for 3T. CONCLUSION: In this feasibility study, values of physiologically relevant parameters of lung microstructure measurable by MRI ( T 2 ∗ , and ADC) were established for C3 F8 in vivo lung imaging in healthy volunteers.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Voluntarios Sanos , Humanos , Pulmón/diagnóstico por imagen , Pruebas de Función Respiratoria
14.
Magn Reson Med ; 85(5): 2622-2633, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33252157

RESUMEN

PURPOSE: Imaging of the different resonances of dissolved hyperpolarized xenon-129 (129 Xe) in the lung is performed using a four-echo flyback 3D radial spectroscopic imaging technique and is evaluated in healthy volunteers (HV) and subjects with idiopathic pulmonary fibrosis (IPF). THEORY AND METHODS: 10 HV and 25 subjects with IPF underwent dissolved 129 Xe MRI at 1.5T. IPF subjects underwent same day pulmonary function tests to measure forced vital capacity and the diffusion capacity of the lung for carbon monoxide (DLCO ). A four-point echo time technique with k-space chemical-shift modeling of gas, dissolved 129 Xe in lung tissue/plasma (TP) and red blood cells (RBC) combined with a 3D radial trajectory was implemented within a 14-s breath-hold. RESULTS: Results show an excellent chemical shift separation of the dissolved 129 Xe compartments and gas contamination removal, confirmed by a strong agreement between average imaging and global spectroscopy RBC/TP ratio measurements. Subjects with IPF exhibited reduced imaging gas transfer when compared to HV. A significant increase of the amplitude of RBC signal cardiogenic oscillation was also observed. In IPF subjects, DLCO % predicted was significantly correlated with RBC/TP and RBC/GAS ratios and the correlations were stronger in the inferior and periphery sections of the lungs. CONCLUSION: Lung MRI of dissolved 129 Xe was performed with a four-echo spectroscopic imaging method. Subjects with IPF demonstrated reduced xenon imaging gas transfer and increased cardiogenic modulation of dissolved xenon signal in the RBCs when compared to HV.


Asunto(s)
Fibrosis Pulmonar Idiopática , Isótopos de Xenón , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Análisis Espectral , Xenón
15.
Eur Respir J ; 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631840

RESUMEN

INTRODUCTION: 129Xe ventilation MRI is sensitive to detect early CF lung disease and response to treatment. 129Xe-MRI could play a significant role in clinical trials and patient management. Here we present data on the repeatability of imaging measurements and their sensitivity to longitudinal change. METHODS: 29 children and adults with CF and a range of disease severity were assessed twice, a median [IQR] of 16.0 [14.4,19.5] months apart. Patients performed 129Xe-MRI, lung clearance index (LCI), body plethysmography and spirometry at both visits. Eleven patients repeated 129Xe-MRI in the same session to assess the within-visit repeatability. The ventilation defect percentage (VDP) was the primary metric calculated from 129Xe-MRI. RESULTS: At baseline, mean (sd) age=23.0 (11.1) years and FEV1 z-score=-2.2 (2.0). Median [IQR] VDP=9.5 [3.4,31.6]%, LCI=9.0 [7.7,13.7]. Within-visit and inter-visit repeatability of VDP was high. At 16 months there was no single trend of 129Xe-MRI disease progression. Visible 129Xe-MRI ventilation changes were common, which reflected changes in VDP. Based on the within-visit repeatability, a significant short-term change in VDP is >±1.6%. For longer-term follow up, changes in VDP of up to ±7.7% can be expected, or ±4.1% for patients with normal FEV1. No patient had a significant change in FEV1, however 59% had change in VDP >±1.6%. In patients with normal FEV1, there were significant changes in ventilation and in VDP. CONCLUSIONS: 129Xe-MRI is a highly effective method for assessing longitudinal lung disease in patients with CF. VDP has great potential as a sensitive clinical outcome measure of lung function and endpoint for clinical trials.

16.
Magn Reson Med ; 83(1): 262-270, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400040

RESUMEN

PURPOSE: To assess the feasibility of using dissolved hyperpolarized xenon-129 (129 Xe) MRI to study renal physiology in humans at 3 T. METHODS: Using a flexible transceiver RF coil, dynamic and spatially resolved 129 Xe spectroscopy was performed in the abdomen after inhalation of hyperpolarized 129 Xe gas with 3 healthy male volunteers. A transmit-only receive-only RF coil array was purpose-built to focus RF excitation and enhance sensitivity for dynamic imaging of 129 Xe uptake in the kidneys using spoiled gradient echo and balanced steady-state sequences. RESULTS: Using spatially resolved spectroscopy, different magnitudes of signal from 129 Xe dissolved in red blood cells and tissue/plasma could be identified in the kidneys and the aorta. The spectra from both kidneys showed peaks with similar amplitudes and chemical shift values. Imaging with the purpose-built coil array was shown to provide more than a 3-fold higher SNR in the kidneys when compared with surrounding tissues, while further physiological information from the dissolved 129 Xe in the lungs and in transit to the kidneys was provided with the transceiver coil. The signal of dissolved hyperpolarized 129 Xe could be imaged with both tested sequences for about 40 seconds after inhalation. CONCLUSION: The uptake of 129 Xe dissolved in the human kidneys was measured with spectroscopic and imaging experiments, demonstrating the potential of hyperpolarized 129 Xe MR as a novel, noninvasive technique to image human kidney tissue perfusion.


Asunto(s)
Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética , Perfusión , Isótopos de Xenón , Abdomen/diagnóstico por imagen , Adulto , Gases , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Masculino , Proyectos Piloto , Ondas de Radio , Reproducibilidad de los Resultados
17.
Magn Reson Med ; 82(1): 342-347, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30821003

RESUMEN

PURPOSE: To develop and assess a method for acquiring coregistered proton anatomical and hyperpolarized 129 Xe ventilation MR images of the lungs with compressed sensing (CS) in a single breath hold. METHODS: Retrospective CS simulations were performed on fully sampled ventilation images acquired from one healthy smoker to optimize reconstruction parameters. Prospective same-breath anatomical and ventilation images were also acquired in five ex-smokers with an acceleration factor of 3 for hyperpolarized 129 Xe images, and were compared to fully sampled images acquired during the same session. The following metrics were used to assess data fidelity: mean absolute error (MAE), root mean square error, and linear regression of the signal intensity between fully sampled and undersampled images. The effect of CS reconstruction on two quantitative imaging metrics routinely reported [percentage ventilated volume (%VV) and heterogeneity score] was also investigated. RESULTS: Retrospective simulations showed good agreement between fully sampled and CS-reconstructed (acceleration factor of 3) images with MAE (root mean square error) of 3.9% (4.5%). The prospective same-breath images showed a good match in ventilation distribution with an average R2 of 0.76 from signal intensity linear regression and a negligible systematic bias of +0.1% in %VV calculation. A bias of -1.8% in the heterogeneity score was obtained. CONCLUSION: With CS, high-quality 3D images of hyperpolarized 129 Xe ventilation (resolution 4.2 × 4.2 × 7.5 mm3 ) can be acquired with coregistered 1 H anatomical MRI in a 15-s breath hold. The accelerated acquisition time dispenses with the need for registration between separate breath-hold 129 Xe and 1 H MRI, enabling more accurate %VV calculation.


Asunto(s)
Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Contencion de la Respiración , Humanos , Pulmón/fisiología , Masculino , Técnicas de Imagen Sincronizada Respiratorias , Fumadores , Isótopos de Xenón/administración & dosificación
19.
J Appl Physiol (1985) ; 126(1): 183-192, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30412033

RESUMEN

In this study, the effect of lung volume on quantitative measures of lung ventilation was investigated using MRI with hyperpolarized 3He and 129Xe. Six volunteers were imaged with hyperpolarized 3He at five different lung volumes [residual volume (RV), RV + 1 liter (1L), functional residual capacity (FRC), FRC + 1L, and total lung capacity (TLC)], and three were also imaged with hyperpolarized 129Xe. Imaging at each of the lung volumes was repeated twice on the same day with corresponding 1H lung anatomical images. Percent lung ventilated volume (%VV) and variation of signal intensity [heterogeneity score (Hscore)] were evaluated. Increased ventilation heterogeneity, quantified by reduced %VV and increased Hscore, was observed at lower lung volumes with the least ventilation heterogeneity observed at TLC. For 3He MRI data, the coefficient of variation of %VV was <1.5% and <5.5% for Hscore at all lung volumes, while for 129Xe data the values were 4 and 10%, respectively. Generally, %VV generated from 129Xe images was lower than that seen from 3He images. The good repeatability of 3He %VV found here supports prior publications showing that percent lung-ventilated volume is a robust method for assessing global lung ventilation. The greater ventilation heterogeneity observed at lower lung volumes indicates that there may be partial airway closure in healthy lungs and that lung volume should be carefully considered for reliable longitudinal measurements of %VV and Hscore. The results suggest that imaging patients at different lung volumes may help to elucidate obstructive disease pathophysiology and progression. NEW & NOTEWORTHY We present repeatability data of quantitative metrics of lung function derived from hyperpolarized helium-3, xenon-129, and proton anatomical images acquired at five lung volumes in volunteers. Increased regional ventilation heterogeneity at lower lung inflation levels was observed in the lungs of healthy volunteers.


Asunto(s)
Helio , Isótopos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ventilación Pulmonar , Isótopos de Xenón , Voluntarios Sanos , Mediciones del Volumen Pulmonar
20.
Thorax ; 74(5): 500-502, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30389827

RESUMEN

Prognosticating idiopathic pulmonary fibrosis (IPF) is challenging, in part due to a lack of sensitive biomarkers. A recent article in Thorax described how hyperpolarised xenon magnetic resonance spectroscopy may quantify regional gas exchange in IPF lungs. In a population of patients with IPF, we find that the xenon signal from red blood cells diminishes relative to the tissue/plasma signal over a 12-month time period, even when the diffusion factor for carbon monoxide is static over the same time period. We conclude that hyperpolarised 129Xe MR spectroscopy may be sensitive to short-term changes in interstitial gas diffusion in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Capacidad de Difusión Pulmonar/métodos , Intercambio Gaseoso Pulmonar/fisiología , Isótopos de Xenón/análisis , Anciano , Femenino , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/fisiopatología , Pulmón/fisiopatología , Espectroscopía de Resonancia Magnética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...