RESUMEN
Genome editing technology is being used in animals for a variety of purposes, including improvement of animal and public health outcomes. Characterization of genome editing reagents and anticipated genomic alterations is an essential step toward the development of an edited animal. Here, we present a protocol for genome editing in the swine testicular (ST) cell line. We describe steps for evaluating CRISPR-Cas9 complex functionality in vitro, delivering editing molecules into cells by transfection, and assessing target editing via Sanger sequencing.
RESUMEN
Better in vitro models are needed to identify active drugs to treat pancreatic adenocarcinoma (PAC) patients. We used 3D hanging drop cultures to produce spheroids from five PAC cell lines and tested nine FDA-approved drugs in clinical use. All PAC cell lines in 2D culture were sensitive to three drugs (gemcitabine, docetaxel and nab-paclitaxel), however most PAC (4/5) 3D spheroids acquired profound chemoresistance even at 10 µM. In contrast, spheroids retained sensitivity to the investigational drug triptolide, which induced apoptosis. The acquired chemoresistance was also transiently retained when cells were placed back into 2D culture and six genes potentially associated with chemoresistance were identified by microarray and confirmed using quantitative RT-PCR. We demonstrate the additive effect of gemcitabine and erlotinib, from the 12 different combinations of nine drugs tested. This comprehensive study shows spheroids as a useful multicellular model of PAC for drug screening and elucidating the mechanism of chemoresistance.
RESUMEN
Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Sunitinib/farmacología , Sunitinib/uso terapéutico , Carcinoma de Células Renales/patología , Antígeno B7-H1 , Neoplasias Renales/patología , Proteínas Quinasas Activadas por AMP , Línea Celular Tumoral , Resistencia a AntineoplásicosRESUMEN
Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.
RESUMEN
Generating high-coverage sequencing coverage at select genomic loci has extensive applications in both research science and genetic medicine. Long-read sequencing technologies (e.g. nanopore sequencing) have expanded our ability to generate sequencing data in regions (e.g. repetitive elements) that are difficult to interrogate with short-read sequencing methods. In work presented here, we expand on our previous work using CRISPR/Cas9 for targeted nanopore sequencing by using in vitro transcribed guideRNAs, with 1100 guideRNAs in a single experiment. This approach decreases the cost per guideRNA, increases the number of guideRNAs that can be multiplexed in a single experiment, and provides a way to rapidly screen numerous guideRNAs for cutting efficiency. We apply this strategy in multiple patient-derived pancreatic cancer cell lines, demonstrating its ability to unveil structural variation in "deletion hotspots" around the tumor suppressor genes p16 (CDKN2A), and SMAD4.
RESUMEN
Here we re-analyze RNA-sequencing data from the anterior cingulate cortex (ACC) of SZ patients using recent methods to improve accuracy and sensitivity of results, such as the quality surrogate variable analysis (qSVA) method and the derfinder R package. We found that genes significantly down-regulated in SZ demonstrated an enrichment for parvalbumin-positive interneurons (FDR < 0.0001). Down-regulated genes were also enriched in oxidative phosphorylation functions (FDR < 0.05). We also addressed whether lifetime exposure to antipsychotics might influence gene expression, highlighting DUSP6, LBH, and NR1D1. Our results support the role of redox imbalance/mitochondrial dysfunction and implicate interneuron subtypes in SZ pathophysiology.
Asunto(s)
Giro del Cíngulo , Esquizofrenia , Humanos , Esquizofrenia/genética , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Mitocondrias/metabolismoRESUMEN
The immune checkpoint programmed death-ligand 1 (PD-L1) is expressed on the cell surface of tumor cells and is key for maintaining an immunosuppressive microenvironment through its interaction with the programmed death 1 (PD-1). Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic cancer characterized by an aberrant aerobic glycolytic metabolism and is known to overexpress PD-L1. Multiple immunotherapies have been approved for the treatment of ccRCC, including cytokines and immune checkpoint inhibitors. Recently the intrinsic role of PD-L1 and interferon gamma (IFNγ) signaling have been studied in several types of tumor cells, yet it remains unclear how they affect the metabolism and signaling pathways of ccRCC. Using metabolomics, metabolic assays and RNAseq, we showed that IFNγ enhanced aerobic glycolysis and tryptophan metabolism in ccRCC cells in vitro and induced the transcriptional expression of signaling pathways related to inflammation, cell proliferation and cellular energetics. These metabolic and transcriptional effects were partially reversed following transient PD-L1 silencing. Aerobic glycolysis, as well as signaling pathways related to inflammation, were not induced by IFNγ when PD-L1 was silenced, however, tryptophan metabolism and activation of Jak2 and STAT1 were maintained. Our data demonstrate that PD-L1 expression is required to mediate some of IFNγ's effect in ccRCC cells and highlight the importance of PD-L1 signaling in regulating the metabolism of ccRCC cells in response to inflammatory signals.
RESUMEN
OBJECTIVE: Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) ß3, a downstream effector of Gαq. Activated PLCß3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by quantitative PCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCß3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS: Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCß3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.
Asunto(s)
Angiopoyetina 2/metabolismo , Capilares/metabolismo , Células Progenitoras Endoteliales/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Neovascularización Patológica , Síndrome de Sturge-Weber/metabolismo , Adolescente , Adulto , Anciano , Angiopoyetina 2/genética , Animales , Capilares/anomalías , Células Cultivadas , Niño , Preescolar , Células Progenitoras Endoteliales/patología , Células Progenitoras Endoteliales/trasplante , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Lactante , Recién Nacido , Masculino , Ratones Desnudos , Mutación , Fenotipo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/patología , Regulación hacia ArribaRESUMEN
Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.
Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Metagenómica/métodos , Virus/genética , Biología Computacional/métodos , Variación Genética , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Interfaz Usuario-Computador , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus/metabolismo , Navegador WebRESUMEN
Chromosomal structural variation can cause severe neurodevelopmental and neuropsychiatric phenotypes. Here we present a nonverbal female adolescent with severe stereotypic movement disorder with severe problem behavior (e.g., self-injurious behavior, aggression, and disruptive and destructive behaviors), autism spectrum disorder, severe intellectual disability, attention deficit hyperactivity disorder, and global developmental delay. Previous cytogenetic analysis revealed balanced translocations present in the patient's apparently normal mother. We hypothesized the presence of unbalanced translocations in the patient due to maternal history of spontaneous abortions. Whole-genome sequencing and whole-genome optical mapping, complementary next-generation genomic technologies capable of the accurate and robust detection of structural variants, identified t(3;10), t(10;14), and t(3;14) three-way balanced translocations in the mother and der(10)t(3;14;10) and der(14)t(3;14;10) translocations in the patient. Instead of a t(3;10), she inherited a normal maternal copy of Chromosome 3, resulting in an unbalanced state of a 3q28qter duplication and 10q26.2qter deletion. Copy-imbalanced genes in one or both of these regions, such as DLG1, DOCK1, and EBF3, may contribute to the patient's phenotype that spans neurodevelopmental, musculoskeletal, and psychiatric domains, with the possible contribution of a maternally inherited 15q13.2q13.3 deletion.
Asunto(s)
Deleción Cromosómica , Malformaciones del Sistema Nervioso/genética , Conducta Autodestructiva , Translocación Genética , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Homólogo 1 de la Proteína Discs Large , Femenino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/terapia , Fenotipo , Trastorno Específico del Lenguaje/genética , Factores de Transcripción , Secuenciación Completa del Genoma , Proteínas de Unión al GTP racRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
OBJECTIVE: The mechanisms leading to schizophrenia are likely to be diverse. However, there may be common pathophysiological pathways for subtypes of the disease. The authors tested the hypothesis that increased protein insolubility and ubiquitination underlie the pathophysiology for a subtype of schizophrenia. METHODS: Prefrontal cortex and superior temporal gyrus from postmortem brains of individuals with and without schizophrenia were subjected to cold sarkosyl fractionation, separating proteins into soluble and insoluble fractions. Protein insolubility and ubiquitin levels were quantified for each insoluble fraction, with normalization to total homogenate protein. Mass spectrometry analysis was then performed to identify the protein contents of the insoluble fractions. The potential biological relevance of the detected proteins was assessed using Gene Ontology enrichment analysis and Ingenuity Pathway Analysis. RESULTS: A subset of the schizophrenia brains showed an increase in protein insolubility and ubiquitination in the insoluble fraction. Mass spectrometry of the insoluble fraction revealed that brains with increased insolubility and ubiquitination exhibited a similar peptide expression by principal component analysis. The proteins that were significantly altered in the insoluble fraction were enriched for pathways relating to axon target recognition as well as nervous system development and function. CONCLUSIONS: This study suggests a pathological process related to protein insolubility for a subset of patients with schizophrenia. Determining the molecular mechanism of this subtype of schizophrenia could lead to a better understanding of the pathways underlying the clinical phenotype in some patients with major mental illness as well as to improved nosology and identification of novel therapeutic targets.
Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/metabolismo , Animales , Antipsicóticos/farmacología , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/patología , Estudios de Casos y Controles , Femenino , Cromatografía de Gases y Espectrometría de Masas , Haloperidol/farmacología , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Ratas , Ratas Sprague-Dawley , Risperidona/farmacología , Esquizofrenia/etiología , Esquizofrenia/fisiopatología , Solubilidad , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , UbiquitinaciónRESUMEN
BACKGROUND: Ultrasensitive detection of low-abundance DNA point mutations is a challenging molecular biology problem, because nearly identical mutant and wild-type molecules exhibit crosstalk. Reliable ultrasensitive point mutation detection will facilitate early detection of cancer and therapeutic monitoring of cancer patients. OBJECTIVE: The objective of this study was to develop a method to correct errors in low-level cell line mixes. MATERIALS AND METHODS: We tested sample mixes with digital-droplet PCR (ddPCR) and next-generation sequencing. RESULTS: We introduced two corrections: baseline variant allele frequency (VAF) in the parental cell line was used to correct for copy number variation; and haplotype counting was used to correct errors in cell counting and pipetting. We found ddPCR to have better correlation for detecting low-level mutations without applying any correction (R2 = 0.80) and be more linear after introducing both corrections (R2 = 0.99). CONCLUSIONS: The VAF correction was found to be more significant than haplotype correction. It is imperative that various technologies be evaluated against each other and laboratories be provided with defined quality control samples for proficiency testing.
Asunto(s)
Análisis Mutacional de ADN , Mutación , Análisis Mutacional de ADN/métodos , Antígenos HLA-A/genética , Haplotipos , Humanos , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
RNA sequencing (RNA-seq) is a powerful approach for measuring gene expression levels in cells and tissues, but it relies on high-quality RNA. We demonstrate here that statistical adjustment using existing quality measures largely fails to remove the effects of RNA degradation when RNA quality associates with the outcome of interest. Using RNA-seq data from molecular degradation experiments of human primary tissues, we introduce a method-quality surrogate variable analysis (qSVA)-as a framework for estimating and removing the confounding effect of RNA quality in differential expression analysis. We show that this approach results in greatly improved replication rates (>3×) across two large independent postmortem human brain studies of schizophrenia and also removes potential RNA quality biases in earlier published work that compared expression levels of different brain regions and other diagnostic groups. Our approach can therefore improve the interpretation of differential expression analysis of transcriptomic data from human tissue.
Asunto(s)
ARN/análisis , Análisis de Secuencia de ARN/métodos , Algoritmos , Animales , Biología Computacional , Replicación del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Sustancia Gris , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , TranscriptomaRESUMEN
Pancreatic ductal adenocarcinoma (PDAC), either sporadic or familial, has a dismal prognosis and finding candidate genes involved in development of the cancer is crucial for the patient care. First, we identified two patients with germline alterations in or adjacent to CDH10 by chromosome studies and sequencing analyses in 41 familial pancreatic cancer (FPC) cases. One patient had a balanced translocation between chromosome 5 and 20. The breakpoint on chromosome band 5p14.2 was â¼810 Kb upstream of CDH10, while that on chromosome arm 20p was in the pericentromeric region which might result in inactivation of one copy of the gene leading to reduced expression of CDH10. This interpretation was supported by loss of heterozygosity (LOH) seen in this region as determined by short tandem repeat analyses. Another patient had a single nucleotide variant in exon 12 (p.Arg688Gln) of CDH10. This amino acid was conserved among vertebrates and the mutation was predicted to have a pathogenic effect on the protein by several prediction algorithms. Next, we analyzed LOH status in the CDH10 region in sporadic PDAC and at least 24% of tumors had evidence of LOH. Immunohistochemical stains with CDH10 antibody showed a different staining pattern between normal pancreatic ducts and PDAC. Taken together, our data supports the notion that CDH10 is involved in sporadic pancreatic carcinogenesis, and might have a role in rare cases of FPC. Further functional studies are needed to elucidate the tumor suppressive role of CDH10 in pancreatic carcinogenesis.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Cadherinas/metabolismo , Carcinoma Ductal Pancreático/patología , Variaciones en el Número de Copia de ADN/genética , Neoplasias Pancreáticas/patología , Biomarcadores de Tumor/genética , Cadherinas/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Estudios de Casos y Controles , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Estadificación de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , PronósticoRESUMEN
Clozapine is the only medication indicated for treating refractory schizophrenia, due to its superior efficacy among all antipsychotic agents, but its mechanism of action is poorly understood. To date, no studies of human postmortem brain have characterized the gene expression response to clozapine. Therefore, we addressed this question by analyzing expression data extracted from published microarray studies involving brains of patients on antipsychotic therapy. We first performed a systematic review and identified four microarray studies of postmortem brains from antipsychotic-treated patients, then extracted the expression data. We then performed generalized linear model analysis on each study separately, and identified the genes differentially expressed in response to clozapine compared to other atypical antipsychotic medications, as well as their associated canonical pathways. We also found a number of genes common to all four studies that we analyzed: GCLM, ZNF652, and GYPC. In addition, pathway analysis highlighted the following processes in all four studies: clathrin-mediated endocytosis, SAPK/JNK signaling, 3-phosphoinositide synthesis, and paxillin signaling. Our analysis yielded the first comprehensive compendium of genes and pathways differentially expressed upon clozapine treatment in the human brain, which may provide insight into the mechanism and unique efficacy of clozapine, as well as the pathophysiology of schizophrenia.
Asunto(s)
Antipsicóticos/uso terapéutico , Encéfalo/efectos de los fármacos , Clozapina/uso terapéutico , Expresión Génica/efectos de los fármacos , Esquizofrenia , Transducción de Señal/efectos de los fármacos , Autopsia , Encéfalo/fisiopatología , Bases de Datos Bibliográficas/estadística & datos numéricos , Femenino , Humanos , Masculino , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Transducción de Señal/genéticaRESUMEN
Despite advances in sequencing, structural variants (SVs) remain difficult to reliably detect due to the short read length (<300 bp) of 2nd generation sequencing. Not only do the reads (or paired-end reads) need to straddle a breakpoint, but repetitive elements often lead to ambiguities in the alignment of short reads. We propose to use the long-reads (up to 20 kb) possible with 3rd generation sequencing, specifically nanopore sequencing on the MinION. Nanopore sequencing relies on a similar concept to a Coulter counter, reading the DNA sequence from the change in electrical current resulting from a DNA strand being forced through a nanometer-sized pore embedded in a membrane. Though nanopore sequencing currently has a relatively high mismatch rate that precludes base substitution and small frameshift mutation detection, its accuracy is sufficient for SV detection because of its long reads. In fact, long reads in some cases may improve SV detection efficiency. We have tested nanopore sequencing to detect a series of well-characterized SVs, including large deletions, inversions, and translocations that inactivate the CDKN2A/p16 and SMAD4/DPC4 tumor suppressor genes in pancreatic cancer. Using PCR amplicon mixes, we have demonstrated that nanopore sequencing can detect large deletions, translocations and inversions at dilutions as low as 1:100, with as few as 500 reads per sample. Given the speed, small footprint, and low capital cost, nanopore sequencing could become the ideal tool for the low-level detection of cancer-associated SVs needed for molecular relapse, early detection, or therapeutic monitoring.
Asunto(s)
Carcinoma Ductal Pancreático/genética , Nanoporos , Neoplasias Pancreáticas/genética , Análisis de Secuencia de ADN/métodos , Roturas del ADN , Genes Supresores de Tumor , Genes p16 , Humanos , Proteína Smad4/genéticaRESUMEN
UNLABELLED: Pancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genomes of 638 patients with familial pancreatic cancer and the tumor exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A, and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types. SIGNIFICANCE: The genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer.
Asunto(s)
Carcinoma/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Pancreáticas/genética , Análisis de Secuencia de ADN/métodos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína BRCA2/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Humanos , Mutación PuntualRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is driven by the inactivation of the tumor suppressor genes (TSGs), CDKN2A (P16) and SMAD4 (DPC4), commonly by homozygous deletions (HDs). Using a combination of high density single-nucleotide polymorphism (SNP) microarray and whole genome sequencing (WGS), we fine-mapped novel breakpoints surrounding deletions of CDKN2A and SMAD4 and characterized them by their underlying structural variants (SVs). Only one third of CDKN2A and SMAD4 deletions (6 of 18) were simple interstitial deletions, rather, the majority of deletions were caused by complex rearrangements, specifically, a translocation on one side of the TSG in combination with an inversion on the other side. We designate these as "TransFlip" mutations. Characteristics of TransFlip mutations are: (1) a propensity to target the TSGs CDKN2A and SMAD4 (P < 0.005), (2) not present in the germline of the examined samples, (3) non-recurrent breakpoints, (4) relatively small (47 bp to 3.4 kb) inversions, (5) inversions can be either telomeric or centromeric to the TSG, and (6) non-reciprocal, and non-recurrent translocations. TransFlip mutations are novel complex genomic rearrangements with unique breakpoint signatures in pancreatic cancer. We hypothesize that they are a common but poorly understood mechanism of TSG inactivation in human cancer. © 2015 Wiley Periodicals, Inc.