Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257980

RESUMEN

Unintentional weight loss, primarily due to the loss of fat mass rather than muscle mass, is common among patients with Parkinson's disease (PD) and is associated with poor quality of life and accelerated disease progression. Since transgenic mice overexpressing human wild-type α-synuclein (α-Syn mice) are modestly leaner than control mice, and since diabetes, a metabolic disorder, is a major risk factor for PD, we reasoned that high-fat diet-induced diabetes/metabolic dysregulation in α-Syn mice may serve as a robust tool for exploring how early α-synuclein pathology contributes to metabolic dysregulation, leading to weight loss in PD. Thus, α-Syn and age-matched controls were fed a high-fat diet (HFD) chow (60% fat calories) ad libitum for four months. Compared with controls on HFD (control-HFD), α-Syn mice on HFD (α-Syn-HFD) were dramatically leaner. The resistance to gaining weight in α-Syn-HFD mice was accompanied by improved glucose tolerance, a dramatic decrease in fat mass, and an increase in energy expenditure. Despite this leaner phenotype and better glucose tolerance, the mortality was much higher in male α-Syn-HFD mice than in all controls, but was unaffected in females, suggesting protective effects of female sex hormones, as well as lower α-synuclein levels. Immunoblot analysis of insulin signaling in the olfactory bulb, the proposed initial seeding site of α-synuclein pathology, revealed a decrease of IGF-IRß, p GSK, and p mTOR in α-Syn-HFD mice. Since GSK-3ß and mTOR regulate synaptic plasticity, we assessed levels of PSD-95 and synaptophysin in the olfactory bulb. As anticipated, we observed a significant decrease in the levels of PSD-95, along with a potentially compensatory increase in synaptophysin levels. Our results show that α-Syn mice, when challenged with diet-induced diabetes/metabolic dysregulation, clearly reveal a profile of robust metabolic dysfunction, thus providing a sensitive tool for assessing the underlying mechanism of metabolic dysfunction and its impact on weight loss and disease progression in PD. We propose a role for olfactory dysfunction in PD-related unintentional weight loss and suggest that strategies aimed at increasing body weight/BMI will improve the quality of life and prognosis for people living with PD.

2.
Mol Metab ; 88: 102005, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137831

RESUMEN

OBJECTIVE: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. METHODS: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. RESULTS: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. CONCLUSIONS: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.


Asunto(s)
Adipocitos , Tejido Adiposo , Glucosa , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Triglicéridos , Animales , Femenino , Ratones , Masculino , Glucosa/metabolismo , Tejido Adiposo/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Triglicéridos/metabolismo , Adipocitos/metabolismo , Células 3T3-L1 , Obesidad/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Lipogénesis , Dieta Alta en Grasa/efectos adversos , Ratones Noqueados , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/genética , Acrilatos
3.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798427

RESUMEN

Objective: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. Methods: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. Results: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. Conclusion: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.

4.
Anat Rec (Hoboken) ; 307(4): 1538-1558, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38131650

RESUMEN

Diarthrognathus broomi is a transitional taxon between non-mammaliaform cynodonts and Mammaliaformes that occurred during the Late Triassic to Early Jurassic. All known specimens of Diarthrognathus represent juveniles, and the postcrania have not been thoroughly described. The palatal, basicranial and postcranial elements of the referred specimen NMQR 1535 are described here for the first time using 3D reconstructions generated from X-ray micro-computed tomography (µCT) data. The presence of a large interpterygoid vacuity, open medial suture between the vomers and medially unossified secondary palate all support the interpretation that NMQR 1535 is a juvenile. In addition, Diarthrognathus uniquely possesses "suborbital" vacuities, which distinguishes it from every other known cynodont. The presence of an ossified olecranon process, among other features, suggests that Diarthrognathus may have been a scratch-digger. The postcranial skeleton of Diarthrognathus appears to be more plesiomorphic than tritylodontids, Brasilodon and other tritheledontids as, among other traits, it retains amphicoelous vertebrae. However, this taxon also displays synapomorphies with the more derived cynodonts, such as the mammalian pattern of neurocentral ossification and possible absence of an ectepicondylar foramen.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Microtomografía por Rayos X , Mamíferos , Hueso Paladar/diagnóstico por imagen
5.
Naturwissenschaften ; 110(4): 27, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272962

RESUMEN

The maxillary canal of the titanosuchid dinocephalian Jonkeria is described based on digitised serial sections. We highlight that its morphology is more like that of the tapinocephalid Moschognathus than that of Anteosaurus. This is unexpected given the similarities between the dentition of Jonkeria and Anteosaurus (i.e., presence of a canine) and the fact that the branching pattern of the maxillary canal in synapsids usually co-varies with dentition. Hypotheses to account for similarities between Jonkeria and Moschognathus (common ancestry, function in social signalling or underwater sensing) are discussed. It is likely that the maxillary canal carries a strong phylogenetic signal, here supporting the clade Tapinocephalia.


Asunto(s)
Ambiente , Maxilar , Animales , Perros , Filogenia , Maxilar/anatomía & histología
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220084, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37183903

RESUMEN

Mammals are diagnosed by more than 30 osteological characters (e.g. squamosal-dentary jaw joint, three inner ear ossicles, etc.) that are readily preserved in the fossil record. However, it is the suite of physiological, soft tissue and behavioural characters (e.g. endothermy, hair, lactation, isocortex and parental care), the evolutionary origins of which have eluded scholars for decades, that most prominently distinguishes living mammals from other amniotes. Here, we review recent works that illustrate how evolutionary changes concentrated in the cranial and dental morphology of mammalian ancestors, the Permian-Jurassic Cynodontia and Mammaliaformes, can potentially be used to document the origin of some of the most crucial defining features of mammals. We discuss how these soft tissue and behavioural traits are highly integrated, and how their evolution is intermingled with that of craniodental traits, thus enabling the tracing of their previously out-of-reach phylogenetic history. Most of these osteological and dental proxies, such as the maxillary canal, bony labyrinth and dental replacement only recently became more easily accessible-thanks, in large part, to the widespread use of X-ray microtomography scanning in palaeontology-because they are linked to internal cranial characters. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Asunto(s)
Evolución Biológica , Mamíferos , Animales , Femenino , Filogenia , Mamíferos/anatomía & histología , Cráneo , Paleontología , Fósiles
7.
Diabetes Metab Res Rev ; 39(6): e3643, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36988137

RESUMEN

BACKGROUND: Plasma levels of angiopoietin-like protein 8 (ANGPTL8) are regulated by feeding and they increase following glucose ingestion. Because both plasma glucose and insulin increase following food ingestion, we aimed to determine whether the increase in plasma insulin and glucose or both are responsible for the increase in ANGPTL8 levels. METHODS: ANGPTL8 levels were measured in 30 subjects, 14 with impaired fasting glucose (IFG), and 16 with normal fasting glucose (NFG); the subjects received 75g glucose oral Glucose tolerance test (OGTT), multistep euglycaemic hyperinsulinemic clamp and hyperglycaemic clamp with pancreatic clamp. RESULTS: Subjects with IFG had significantly higher ANGPTL8 than NGT subjects during the fasting state (p < 0.05). During the OGTT, plasma ANGPTL8 concentration increased by 62% above the fasting level (p < 0.0001), and the increase above fasting in ANGPTL8 levels was similar in NFG and IFG individuals. During the multistep insulin clamp, there was a dose-dependent increase in plasma ANGPTL8 concentration. During the 2-step hyperglycaemic clamp, the rise in plasma glucose concentration failed to cause any change in the plasma ANGPTL8 concentration from baseline. CONCLUSIONS: In response to nutrient ingestion, ANGPTL8 level increased due to increased plasma insulin concentration, not to the rise in plasma glucose. The incremental increase above baseline in plasma ANGLPTL8 during OGTT was comparable between people with normal glucose tolerance and IFG.


Asunto(s)
Intolerancia a la Glucosa , Hiperinsulinismo , Resistencia a la Insulina , Hormonas Peptídicas , Estado Prediabético , Humanos , Glucemia/metabolismo , Intolerancia a la Glucosa/metabolismo , Proteína 8 Similar a la Angiopoyetina , Insulina/metabolismo , Glucosa/metabolismo , Ayuno , Ingestión de Alimentos , Insulina Regular Humana , Nutrientes , Resistencia a la Insulina/fisiología
8.
Cell Rep ; 42(3): 112155, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857182

RESUMEN

The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-µM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, ß-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.


Asunto(s)
Tejido Adiposo Pardo , Metabolismo Energético , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de Transporte de Catión , Dieta , Dieta Alta en Grasa , Metabolismo Energético/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Obesidad/metabolismo , Termogénesis/genética
10.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168419

RESUMEN

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

11.
Am J Physiol Endocrinol Metab ; 323(2): E123-E132, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35723225

RESUMEN

Fibroblast growth factor 21 (FGF21) is increased acutely by carbohydrate ingestion and is elevated in patients with type 2 diabetes (T2D). However, the physiological significance of increased FGF21 in humans remains largely unknown. We examined whether FGF21 contributed to the metabolic improvements observed following treatment of patients with T2D with either triple (metformin/pioglitazone/exenatide) or conventional (metformin/insulin/glipizide) therapy for 3 yr. Forty-six patients with T2D were randomized to receive either triple or conventional therapy to maintain HbA1c < 6.5%. A 2-h 75-g oral glucose tolerance test (OGTT) was performed at baseline and following 3 years of treatment to assess glucose tolerance, insulin sensitivity, and ß-cell function. Plasma total and bioactive FGF21 levels were quantitated before and during the OGTT at both visits. Patients in both treatment arms experienced significant improvements in glucose control, but insulin sensitivity and ß-cell function were markedly increased after triple therapy. At baseline, FGF21 levels were regulated acutely during the OGTT in both groups. After treatment, fasting total and bioactive FGF21 levels were significantly reduced in patients receiving triple therapy, but there was a relative increase in the proportion of bioactive FGF21 compared with that observed in conventionally treated subjects. Relative to baseline studies, triple therapy treatment also significantly modified FGF21 levels in response to a glucose load. These changes in circulating FGF21 were correlated with markers of improved glucose control and insulin sensitivity. Alterations in the plasma FGF21 profile may contribute to the beneficial metabolic effects of pioglitazone and exenatide in human patients with T2D.NEW & NOTEWORTHY In patients with T2D treated with a combination of metformin/pioglitazone/exenatide (triple therapy), we observed reduced total and bioactive plasma FGF21 levels and a relative increase in the proportion of circulating bioactive FGF21 compared with that in patients treated with metformin and sequential addition of glipizide and basal insulin glargine (conventional therapy). These data suggest that FGF21 may contribute, at least in part, to the glycemic benefits observed following combination therapy in patients with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Metformina , Tiazolidinedionas , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida , Factores de Crecimiento de Fibroblastos , Glipizida , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Péptidos , Pioglitazona , Ponzoñas
12.
J Clin Endocrinol Metab ; 107(8): e3177-e3185, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35552423

RESUMEN

CONTEXT: Sustained increases in plasma glucose promote skeletal muscle insulin resistance independent from obesity and dyslipidemia (ie, glucotoxicity). Skeletal muscle lipids are key molecular determinants of insulin action, yet their involvement in the development of glucotoxicity is unclear. OBJECTIVE: To explore the impact of mild physiologic hyperglycemia on skeletal muscle lipids. DESIGN: Single group pretest-posttest. PARTICIPANTS: Healthy males and females with normal glucose tolerance. INTERVENTIONS: 72-hour glucose infusion raising plasma glucose by ~50 mg/dL. MAIN OUTCOME MEASURES: Skeletal muscle lipids, insulin sensitivity, lipid oxidation. RESULTS: Despite impairing insulin-mediated glucose disposal and suppressing fasting lipid oxidation, hyperglycemia did not alter either the content or composition of skeletal muscle triglycerides, diacylglycerides, or phospholipids. Skeletal muscle ceramides decreased after glucose infusion, likely in response to a reduction in free fatty acid concentrations. CONCLUSIONS: Our results demonstrate that the major lipid pools in skeletal muscle are unperturbed by sustained increases in glucose availability and suggest that glucotoxicity and lipotoxicity drive insulin resistance through distinct mechanistic pathways.


Asunto(s)
Hiperglucemia , Resistencia a la Insulina , Glucemia/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Femenino , Glucosa/metabolismo , Voluntarios Sanos , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Músculo Esquelético/metabolismo
13.
Metabolism ; 129: 155142, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066003

RESUMEN

Insulin is the master regulator of glucose, lipid, and protein metabolism. Following ingestion of an oral glucose load or mixed meal, the plasma glucose concentration rises, insulin secretion by the beta cells is stimulated and the hyperinsulinemia, working in concert with hyperglycemia, causes: (i) suppression of endogenous (primarily reflects hepatic) glucose production, (ii) stimulation of glucose uptake by muscle, liver, and adipocytes, (iii) inhibition of lipolysis leading to a decline in plasma FFA concentration which contributes to the suppression of hepatic glucose production and augmentation of muscle glucose uptake, and (iv) vasodilation in muscle, which contributes to enhanced muscle glucose disposal. Herein, the integrated physiologic impact of insulin to maintain normal glucose homeostasis is reviewed and the molecular basis of insulin's diverse actions in muscle, liver, adipocytes, and vasculature are discussed.


Asunto(s)
Resistencia a la Insulina , Insulina , Metabolismo de los Hidratos de Carbono , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Lipólisis , Hígado/metabolismo
14.
Front Physiol ; 12: 784391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925073

RESUMEN

The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.

15.
J Am Coll Cardiol ; 77(16): 2022-2039, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888253

RESUMEN

The mechanisms responsible for the positive and unexpected cardiovascular effects of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes remain to be defined. It is likely that some of the beneficial cardiac effects of these antidiabetic drugs are mediated, in part, by altered myocardial metabolism. Common cardiometabolic disorders, including the metabolic (insulin resistance) syndrome and type 2 diabetes, are associated with altered substrate utilization and energy transduction by the myocardium, predisposing to the development of heart disease. Thus, the failing heart is characterized by a substrate shift toward glycolysis and ketone oxidation in an attempt to meet the high energetic demand of the constantly contracting heart. This review examines the metabolic pathways and clinical implications of myocardial substrate utilization in the normal heart and in cardiometabolic disorders, and discusses mechanisms by which antidiabetic drugs and metabolic interventions improve cardiac function in the failing heart.


Asunto(s)
Metabolismo Energético/fisiología , Insuficiencia Cardíaca/metabolismo , Hipoglucemiantes/uso terapéutico , Miocardio/metabolismo , Literatura de Revisión como Asunto , Animales , Metabolismo Energético/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Hipoglucemiantes/farmacología , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
16.
Sci Rep ; 11(1): 1932, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479282

RESUMEN

Insulin is an essential hormone that regulates glucose homeostasis and metabolism. Insulin resistance (IR) arises when tissues fail to respond to insulin, and it leads to serious health problems including Type 2 Diabetes (T2D). Obesity is a major contributor to the development of IR and T2D. We previously showed that gene expression of alcohol dehydrogenase 1B (ADH1B) was inversely correlated with obesity and IR in subcutaneous adipose tissue of Mexican Americans. In the current study, a meta-analysis of the relationship between ADH1B expression and BMI in Mexican Americans, African Americans, Europeans, and Pima Indians verified that BMI was increased with decreased ADH1B expression. Using established human subcutaneous pre-adipocyte cell lines derived from lean (BMI < 30 kg m-2) or obese (BMI ≥ 30 kg m-2) donors, we found that ADH1B protein expression increased substantially during differentiation, and overexpression of ADH1B inhibited fatty acid binding protein expression. Mature adipocytes from lean donors expressed ADH1B at higher levels than obese donors. Insulin further induced ADH1B protein expression as well as enzyme activity. Knockdown of ADH1B expression decreased insulin-stimulated glucose uptake. Our findings suggest that ADH1B is involved in the proper development and metabolic activity of adipose tissues and this function is suppressed by obesity.


Asunto(s)
Alcohol Deshidrogenasa/genética , Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Obesidad/genética , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Resistencia a la Insulina/genética , Americanos Mexicanos/genética , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/patología , Grasa Subcutánea/metabolismo
17.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33400689

RESUMEN

The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal-fat diet (NFD) or high-fat diet (HFD) to control and kidney proximal tubule IR-knockout (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. Baseline serum glucose, serum creatinine, and the ratio of urinary albumin to creatinine (ACR) were similar in KPTIRKO mice compared to those of controls. On HFD, weight gain and increase in serum cholesterol were similar in control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR, urinary kidney injury molecule-1-to-creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD-fed male control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Túbulos Renales Proximales/metabolismo , Receptor de Insulina/metabolismo , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo , Animales , Epitelio/metabolismo , Femenino , Sulfuro de Hidrógeno/metabolismo , Resistencia a la Insulina , Corteza Renal/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/complicaciones , Obesidad/metabolismo , Receptor de Insulina/deficiencia , Receptor de Insulina/genética , Factores Sexuales , Transducción de Señal
18.
Mol Metab ; 45: 101154, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359401

RESUMEN

OBJECTIVE: Insulin resistance and altered hepatic mitochondrial function are central features of type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), but the etiological role of these processes in disease progression remains unclear. Here we investigated the molecular links between insulin resistance, mitochondrial remodeling, and hepatic lipid accumulation. METHODS: Hepatic insulin sensitivity, endogenous glucose production, and mitochondrial metabolic fluxes were determined in wild-type, obese (ob/ob) and pioglitazone-treatment obese mice using a combination of radiolabeled tracer and stable isotope NMR approaches. Mechanistic studies of pioglitazone action were performed in isolated primary hepatocytes, whilst molecular hepatic lipid species were profiled using shotgun lipidomics. RESULTS: Livers from obese, insulin-resistant mice displayed augmented mitochondrial content and increased tricarboxylic acid cycle (TCA) cycle and pyruvate dehydrogenase (PDH) activities. Insulin sensitization with pioglitazone mitigated pyruvate-driven TCA cycle activity and PDH activation via both allosteric (intracellular pyruvate availability) and covalent (PDK4 and PDP2) mechanisms that were dependent on PPARγ activity in isolated primary hepatocytes. Improved mitochondrial function following pioglitazone treatment was entirely dissociated from changes in hepatic triglycerides, diacylglycerides, or fatty acids. Instead, we highlight a role for the mitochondrial phospholipid cardiolipin, which underwent pathological remodeling in livers from obese mice that was reversed by insulin sensitization. CONCLUSION: Our findings identify targetable mitochondrial features of T2D and NAFLD and highlight the benefit of insulin sensitization in managing the clinical burden of obesity-associated disease.


Asunto(s)
Resistencia a la Insulina/fisiología , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Glucemia/metabolismo , Cardiolipinas , Ciclo del Ácido Cítrico , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Tiazolidinedionas , Triglicéridos/metabolismo
19.
PLoS One ; 15(12): e0243985, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33378326

RESUMEN

Sixteen specimens of the Early Triassic cynodont Galesaurus planiceps (including eight that were scanned using micro-computed tomography) representing different ontogenetic stages were assembled to study the dental replacement in the species. The growth series shows that the incisors and postcanines continue to develop and replace, even in the largest (presumably oldest) specimen. In contrast, replacement of the canines ceased with the attainment of skeletal maturity, at a basal skull length of ~90 mm, suggesting that Galesaurus had a finite number of canine replacement cycles. Additionally, the functional canine root morphology of these larger specimens showed a tendency to be open-rooted, a condition not previously reported in Mesozoic theriodonts. An alternating pattern of tooth replacement was documented in the maxillary and mandibular postcanine series. Both postcanine series increased in tooth number as the skull lengthened, with the mandibular postcanine series containing more teeth than the maxillary series. In the maxilla, the first postcanine is consistently the smallest tooth, showing a proportional reduction in size as skull length increased. The longer retention of a tooth in this first locus is a key difference between Galesaurus and Thrinaxodon, in which the mesial-most postcanines are lost after replacement. This difference has contributed to the lengthening of the postcanine series in Galesaurus, as teeth continued to be added to the distal end of the tooth row through ontogeny. Overall, there are considerable differences between Galesaurus and Thrinaxodon relating to the replacement and development of their teeth.


Asunto(s)
Dinosaurios/anatomía & histología , Fósiles/anatomía & histología , Diente/anatomía & histología , Animales , Dinosaurios/clasificación , Maxilar/anatomía & histología , Filogenia
20.
Cell ; 183(2): 474-489.e17, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035451

RESUMEN

Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.


Asunto(s)
Retículo Endoplásmico/metabolismo , Ácido Láctico/metabolismo , Magnesio/metabolismo , Animales , Células COS , Calcio/metabolismo , Señalización del Calcio/fisiología , Chlorocebus aethiops , Retículo Endoplásmico/fisiología , Femenino , Células HeLa , Células Hep G2 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...