Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Oncol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757376

RESUMEN

Genetic heterogeneity in tumors can show a remarkable selectivity when two or more independent genetic events occur in the same gene. This phenomenon, called composite mutation, points toward a selective pressure, which frequently causes therapy resistance to mutation-specific drugs. Since composite mutations have been described to occur in sub-clonal populations, they are not always captured through biopsy sampling. Here, we provide a proof of concept to predict composite mutations to anticipate which patients might be at risk for sub-clonally driven therapy resistance. We found that composite mutations occur in 5% of cancer patients, mostly affecting the PIK3CA, EGFR, BRAF, and KRAS genes, which are common precision medicine targets. Furthermore, we found a strong and significant relationship between the frequencies of composite mutations with commonly co-occurring mutations in a non-composite context. We also found that co-mutations are significantly enriched on the same chromosome. These observations were independently confirmed using cell line data. Finally, we show the feasibility of predicting compositive mutations based on their co-mutations (AUC 0.62, 0.81, 0.82, and 0.91 for EGFR, PIK3CA, KRAS, and BRAF, respectively). This prediction model could help to stratify patients who are at risk of developing therapy resistance-causing mutations.

2.
Clin Cancer Res ; 30(8): 1685-1695, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38597991

RESUMEN

PURPOSE: Combination therapies are a promising approach for improving cancer treatment, but it is challenging to predict their resulting adverse events in a real-world setting. EXPERIMENTAL DESIGN: We provide here a proof-of-concept study using 15 million patient records from the FDA Adverse Event Reporting System (FAERS). Complex adverse event frequencies of drugs or their combinations were visualized as heat maps onto a two-dimensional grid. Adverse event frequencies were shown as colors to assess the ratio between individual and combined drug effects. To capture these patterns, we trained a convolutional neural network (CNN) autoencoder using 7,300 single-drug heat maps. In addition, statistical synergy analyses were performed on the basis of BLISS independence or χ2 testing. RESULTS: The trained CNN model was able to decode patterns, showing that adverse events occur in global rather than isolated and unique patterns. Patterns were not likely to be attributed to disease symptoms given their relatively limited contribution to drug-associated adverse events. Pattern recognition was validated using trial data from ClinicalTrials.gov and drug combination data. We examined the adverse event interactions of 140 drug combinations known to be avoided in the clinic and found that near all of them showed additive rather than synergistic interactions, also when assessed statistically. CONCLUSIONS: Our study provides a framework for analyzing adverse events and suggests that adverse drug interactions commonly result in additive effects with a high level of overlap of adverse event patterns. These real-world insights may advance the implementation of new combination therapies in clinical practice.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Interacciones Farmacológicas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología
3.
Front Immunol ; 15: 1343484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318180

RESUMEN

Background: Glioblastomas manipulate the immune system both locally and systemically, yet, glioblastoma-associated changes in peripheral blood immune composition are poorly studied. Age and dexamethasone administration in glioblastoma patients have been hypothesized to limit the effectiveness of immunotherapy, but their effects remain unclear. We compared peripheral blood immune composition in patients with different types of brain tumor to determine the influence of age, dexamethasone treatment, and tumor volume. Methods: High-dimensional mass cytometry was used to characterise peripheral blood mononuclear cells of 169 patients with glioblastoma, lower grade astrocytoma, metastases and meningioma. We used blood from medically-refractory epilepsy patients and healthy controls as control groups. Immune phenotyping was performed using FlowSOM and t-SNE analysis in R followed by supervised annotation of the resulting clusters. We conducted multiple linear regression analysis between intracranial pathology and cell type abundance, corrected for clinical variables. We tested correlations between cell type abundance and survival with Cox-regression analyses. Results: Glioblastoma patients had significantly fewer naive CD4+ T cells, but higher percentages of mature NK cells than controls. Decreases of naive CD8+ T cells and alternative monocytes and an increase of memory B cells in glioblastoma patients were influenced by age and dexamethasone treatment, and only memory B cells by tumor volume. Progression free survival was associated with percentages of CD4+ regulatory T cells and double negative T cells. Conclusion: High-dimensional mass cytometry of peripheral blood in patients with different types of intracranial tumor provides insight into the relation between intracranial pathology and peripheral immune status. Wide immunosuppression associated with age and pre-operative dexamethasone treatment provide further evidence for their deleterious effects on treatment with immunotherapy.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Leucocitos Mononucleares/patología , Linfocitos T CD4-Positivos , Inmunoterapia/métodos , Dexametasona/uso terapéutico
4.
iScience ; 27(2): 108807, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303726

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME.

5.
Neurooncol Adv ; 5(1): vdad134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38047207

RESUMEN

Background: In recent years, drug combinations have become increasingly popular to improve therapeutic outcomes in various diseases, including difficult to cure cancers such as the brain cancer glioblastoma. Assessing the interaction between drugs over time is critical for predicting drug combination effectiveness and minimizing the risk of therapy resistance. However, as viability readouts of drug combination experiments are commonly performed as an endpoint where cells are lysed, longitudinal drug-interaction monitoring is currently only possible through combined endpoint assays. Methods: We provide a method for massive parallel monitoring of drug interactions for 16 drug combinations in 3 glioblastoma models over a time frame of 18 days. In our assay, viabilities of single neurospheres are to be estimated based on image information taken at different time points. Neurosphere images taken on the final day (day 18) were matched to the respective viability measured by CellTiter-Glo 3D on the same day. This allowed to use of machine learning to decode image information to viability values on day 18 as well as for the earlier time points (on days 8, 11, and 15). Results: Our study shows that neurosphere images allow us to predict cell viability from extrapolated viabilities. This enables to assess of the drug interactions in a time window of 18 days. Our results show a clear and persistent synergistic interaction for several drug combinations over time. Conclusions: Our method facilitates longitudinal drug-interaction assessment, providing new insights into the temporal-dynamic effects of drug combinations in 3D neurospheres which can help to identify more effective therapies against glioblastoma.

6.
Sci Adv ; 9(41): eade3300, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824607

RESUMEN

Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.


Asunto(s)
Neuronas , Células Piramidales , Humanos , Ratones , Animales , Neuronas/fisiología , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Potenciales de la Membrana/fisiología , Sodio
7.
Sci Adv ; 9(41): eadf0708, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824618

RESUMEN

Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.


Asunto(s)
Neocórtex , Neuronas , Humanos , Potenciales de Acción/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Interneuronas/fisiología
8.
Mol Cancer ; 22(1): 129, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563568

RESUMEN

BACKGROUND: This Phase 1 study evaluates the intra- and peritumoral administration by convection enhanced delivery (CED) of human recombinant Bone Morphogenetic Protein 4 (hrBMP4) - an inhibitory regulator of cancer stem cells (CSCs) - in recurrent glioblastoma. METHODS: In a 3 + 3 dose escalation design, over four to six days, fifteen recurrent glioblastoma patients received, by CED, one of five doses of hrBMP4 ranging from 0·5 to 18 mg. Patients were followed by periodic physical, neurological, blood testing, magnetic resonance imaging (MRI) and quality of life evaluations. The primary objective of this first-in-human study was to determine the safety, dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of hrBMP4. Secondary objectives were to assess potential efficacy and systemic exposure to hrBMP4 upon intracerebral infusion. RESULTS: Intra- and peritumoral infusion of hrBMP4 was safe and well-tolerated. We observed no serious adverse events related to this drug. Neither MTD nor DLT were reached. Three patients had increased hrBMP4 serum levels at the end of infusion, which normalized within 4 weeks, without sign of toxicity. One patient showed partial response and two patients a complete (local) tumor response, which was maintained until the most recent follow-up, 57 and 30 months post-hrBMP4. Tumor growth was inhibited in areas permeated by hrBMP4. CONCLUSION: Local delivery of hrBMP4 in and around recurring glioblastoma is safe and well-tolerated. Three patients responded to the treatment. A complete response and long-term survival occurred in two of them. This warrants further clinical studies on this novel treatment targeting glioblastoma CSCs. TRIAL REGISTRATION: ClinicaTrials.gov identifier: NCT02869243.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Calidad de Vida , Proteína Morfogenética Ósea 4/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Encefálicas/patología , Dosis Máxima Tolerada
9.
Neurooncol Adv ; 5(1): vdad073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455945

RESUMEN

Background: IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients. Methods: We performed the largest drug combination screen to date in GBM, using a high-throughput effort where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures. 43 drug combinations were selected for interaction analysis based on their monotherapy efficacy and were tested in a short-term (3 days) as well as long-term (18 days) assay. Synergy was assessed using dose-equivalence and multiplicative survival metrics. Results: We observed a consistent synergistic interaction for 15 out of 43 drug combinations on patient-derived GBM cultures. From these combinations, 11 out of 15 drug combinations showed a longitudinal synergistic effect on GBM cultures. The highest synergies were observed in the drug combinations Lapatinib with Thapsigargin and Lapatinib with Obatoclax Mesylate, both targeting epidermal growth factor receptor and affecting the apoptosis pathway. To further elaborate on the apoptosis cascade, we investigated other, more clinically relevant, apoptosis inducers and observed a strong synergistic effect while combining Venetoclax (BCL targeting) and AZD5991 (MCL1 targeting). Conclusions: Overall, we have identified via a high-throughput drug screening several new treatment strategies for GBM. Moreover, an exceptionally strong synergistic interaction was discovered between kinase targeting and apoptosis induction which is suitable for further clinical evaluation as multi-targeted combination therapy.

10.
Nat Commun ; 14(1): 4188, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443107

RESUMEN

GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult human cortical neurons, and how their expression relates to neuronal function and structure. We find that these gene sets are preferentially expressed in L3 pyramidal neurons in middle temporal gyrus (MTG). Furthermore, neurons with higher expression had larger total dendritic length (TDL) and faster action potential (AP) kinetics, properties previously linked to intelligence. We identify a subset of genes associated with TDL or AP kinetics with predominantly synaptic functions and high abundance of HARs.


Asunto(s)
Neuronas , Células Piramidales , Adulto , Humanos , Neuronas/metabolismo , Células Piramidales/fisiología , Cognición , Lóbulo Temporal , Encéfalo
11.
J Am Heart Assoc ; 12(13): e028447, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37345802

RESUMEN

Background Appropriate treatment of pulmonary hypertension (PH) is critically dependent on accurate discrimination between pre- and postcapillary PH. However, clinical discrimination is challenging and frequently requires a right heart catheterization. Existing risk scores to detect postcapillary PH have suboptimal discriminatory strength. We have previously shown that platelet-derived RNA profiles may have diagnostic value for PH detection. Here, we hypothesize that platelet-derived RNAs can be employed to select unique biomarker panels for the discrimination between pre- and postcapillary PH. Methods and Results Blood platelet RNA from whole blood was isolated and sequenced from 50 patients with precapillary PH (with different PH subtypes) as well as 50 patients with postcapillary PH. RNA panels were calculated by ANOVA statistics, and classifications were performed using a support vector machine algorithm, supported by particle swarm optimization. We identified in total 4279 different RNAs in blood platelets from patients with pre- and postcapillary PH. A particle swarm optimization-selected RNA panel of 1618 distinctive RNAs with differential levels together with a trained support vector machine algorithm accurately discriminated patients with precapillary PH from patients with postcapillary PH with 100% sensitivity, 60% specificity, 80% accuracy, and 0.95 (95% CI, 0.86-1.00) area under the curve in the independent validation series (n=20). Conclusions This proof-of-concept study demonstrates that particle swarm optimization/support vector machine-enhanced classification of platelet RNA panels may be able to discriminate precapillary PH from postcapillary PH. This research provides a foundation for the development of a blood test with a high negative predictive value that would improve early diagnosis of precapillary PH and prevents unnecessary invasive testing in patients with postcapillary PH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/genética , Plaquetas , Cateterismo Cardíaco , Valor Predictivo de las Pruebas , Factores de Riesgo
12.
Sci Rep ; 13(1): 9359, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291189

RESUMEN

Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Algoritmos , ARN/metabolismo , Plaquetas/metabolismo , Pruebas Hematológicas
13.
J Med Chem ; 66(11): 7253-7267, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37217193

RESUMEN

The blood-brain barrier (BBB) represents a major obstacle to delivering drugs to the central nervous system (CNS), resulting in the lack of effective treatment for many CNS diseases including brain cancer. To accelerate CNS drug development, computational prediction models could save the time and effort needed for experimental evaluation. Here, we studied BBB permeability focusing on active transport (influx and efflux) as well as passive diffusion using previously published and self-curated data sets. We created prediction models based on physicochemical properties, molecular substructures, or their combination to understand which mechanisms contribute to BBB permeability. Our results show that features that predicted passive diffusion over membranes overlap with features that explain endothelial permeation of approved CNS-active drugs. We also identified physical properties and molecular substructures that positively or negatively predicted BBB transport. These findings provide guidance toward identifying BBB-permeable compounds by optimally matching physicochemical and molecular properties to BBB transport mechanisms.


Asunto(s)
Barrera Hematoencefálica , Sistema Nervioso Central , Transporte Biológico , Permeabilidad , Difusión , Fármacos del Sistema Nervioso Central/farmacología
14.
Genes Dev ; 37(5-6): 243-257, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36810209

RESUMEN

Transfer RNAs (tRNAs) are small adaptor RNAs essential for mRNA translation. Alterations in the cellular tRNA population can directly affect mRNA decoding rates and translational efficiency during cancer development and progression. To evaluate changes in the composition of the tRNA pool, multiple sequencing approaches have been developed to overcome reverse transcription blocks caused by the stable structures of these molecules and their numerous base modifications. However, it remains unclear whether current sequencing protocols faithfully capture tRNAs existing in cells or tissues. This is specifically challenging for clinical tissue samples that often present variable RNA qualities. For this reason, we developed ALL-tRNAseq, which combines the highly processive MarathonRT and RNA demethylation for the robust assessment of tRNA expression, together with a randomized adapter ligation strategy prior to reverse transcription to assess tRNA fragmentation levels in both cell lines and tissues. Incorporation of tRNA fragments not only informed on sample integrity but also significantly improved tRNA profiling of tissue samples. Our data showed that our profiling strategy effectively improves classification of oncogenic signatures in glioblastoma and diffuse large B-cell lymphoma tissues, particularly for samples presenting higher levels of RNA fragmentation, further highlighting the utility of ALL-tRNAseq for translational research.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Mensajero/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos
15.
Cereb Cortex ; 33(6): 2857-2878, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802476

RESUMEN

Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.


Asunto(s)
Neocórtex , Receptores de N-Metil-D-Aspartato , Ratas , Adulto , Animales , Humanos , Ratones , Receptores de N-Metil-D-Aspartato/fisiología , Ratas Wistar , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología
16.
Clin Cancer Res ; 28(8): 1572-1585, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35176144

RESUMEN

PURPOSE: Testing safety of Delta24-RGD (DNX-2401), an oncolytic adenovirus, locally delivered by convection enhanced delivery (CED) in tumor and surrounding brain of patients with recurrent glioblastoma. PATIENTS AND METHODS: Dose-escalation phase I study with 3+3 cohorts, dosing 107 to 1 × 1011 viral particles (vp) in 20 patients. Besides clinical parameters, adverse events, and radiologic findings, blood, cerebrospinal fluid (CSF), brain interstitial fluid, and excreta were sampled over time and analyzed for presence of immune response, viral replication, distribution, and shedding. RESULTS: Of 20 enrolled patients, 19 received the oncolytic adenovirus Delta24-RGD, which was found to be safe and feasible. Four patients demonstrated tumor response on MRI, one with complete regression and still alive after 8 years. Most serious adverse events were attributed to increased intracranial pressure caused by either an inflammatory reaction responding to steroid treatment or viral meningitis being transient and self-limiting. Often viral DNA concentrations in CSF increased over time, peaking after 2 to 4 weeks and remaining up to 3 months. Concomitantly Th1- and Th2-associated cytokine levels and numbers of CD3+ T and natural killer cells increased. Posttreatment tumor specimens revealed increased numbers of macrophages and CD4+ and CD8+ T cells. No evidence of viral shedding in excreta was observed. CONCLUSIONS: CED of Delta24-RGD not only in the tumor but also in surrounding brain is safe, induces a local inflammatory reaction, and shows promising clinical responses.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae/genética , Convección , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética
17.
Neurooncol Pract ; 8(5): 559-568, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34589232

RESUMEN

BACKGROUND: Regional collaboration and appropriate referral management are crucial in neuro-oncological care. Lack of electronic access to medical records across health care organizations impedes interhospital consultation and may lead to incomplete and delayed referrals. To improve referral management, we have established a multidisciplinary neuro-oncological triage panel (NOTP) with digital image exchange and determined the effects on lead times, costs, and time investment. METHODS: A prospective cohort study was conducted from February 2019 to March 2020. All newly diagnosed patients referred to Brain Tumor Center Amsterdam were analyzed according to referral pathway: (1) standard referral (SR), (2) NOTP. The primary outcome was lead time, defined as time-to-referral, time-to-treatment, and total time (median days [interquartile range]). Secondary outcomes were costs and time investment. RESULTS: In total, 225 patients were included, of whom 153 had SR and 72 NOTP referral. Patients discussed in the NOTP were referred more frequently for first neurosurgical consultation (44.7% vs 28.8%) or combined neurological and neurosurgical consultation (12.8% vs 2.5%, P = .002). Time-to-referral was reduced for NOTP referral compared to SR (1 [0.25-4] vs 6 [1.5-10] days, P < .001). Total time decreased from 27 [14-48] days for the standard group to 15 [12-38.25] days for the NOTP group (P = .040). Costs and time investment were comparable for both groups. CONCLUSION: Implementation of digital referral to a multidisciplinary NOTP is feasible and leads to more swift patient-tailored referrals at comparable costs and time investment as SR. This quality improvement initiative has the potential to improve collaboration and coordination of multidisciplinary care in the field of neuro-oncology.

18.
Brain Connect ; 11(10): 865-874, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33947274

RESUMEN

Introduction: Glioma patients show increased global brain network clustering related to poorer cognition and epilepsy. However, it is unclear whether this increase is spatially widespread, localized in the (peri)tumor region only, or decreases with distance from the tumor. Materials and Methods: Weighted global and local brain network clustering was determined in 71 glioma patients and 53 controls by using magnetoencephalography. Tumor clustering was determined by averaging local clustering of regions overlapping with the tumor, and vice versa for non-tumor regions. Euclidean distance was determined from the tumor centroid to the centroids of other regions. Results: Patients showed higher global clustering compared with controls. Clustering of tumor and non-tumor regions did not differ, and local clustering was not associated with distance from the tumor. Post hoc analyses revealed that in the patient group, tumors were located more often in regions with higher clustering in controls, but it seemed that tumors of patients with high global clustering were located more often in regions with lower clustering in controls. Conclusions: Glioma patients show non-local network disturbances. Tumors of patients with high global clustering may have a preferred localization, namely regions with lower clustering in controls, suggesting that tumor localization relates to the extent of network disruption. Impact statement This work uses the innovative framework of network neuroscience to investigate functional connectivity patterns associated with brain tumors. Glioma (primary brain tumor) patients experience cognitive deficits and epileptic seizures, which have been related to brain network alterations. This study shows that glioma patients have a spatially widespread increase in global network clustering, which cannot be attributed to local effects of the tumor. Moreover, tumors occur more often in brain regions with higher network clustering in controls. This study emphasizes the global character of network alterations in glioma patients and suggests that preferred tumor locations are characterized by particular network profiles.


Asunto(s)
Neoplasias Encefálicas , Glioma , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Red Nerviosa
19.
Cell Rep Med ; 1(7): 100101, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33103128

RESUMEN

Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74-0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95-0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70-1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Monitoreo Fisiológico/métodos , Esclerosis Múltiple/diagnóstico , ARN Neoplásico/genética , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Plaquetas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/cirugía , Estudios de Casos y Controles , Progresión de la Enfermedad , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/cirugía , Humanos , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Metástasis de la Neoplasia , Empalme del ARN , ARN Neoplásico/metabolismo , Curva ROC , Análisis de Supervivencia , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...