Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 26: 101062, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706729

RESUMEN

Current therapeutic approaches for skin cancer face significant challenges, including wound infection, delayed skin regeneration, and tumor recurrence. To overcome these challenges, an injectable adhesive near-infrared (NIR)-responsive hydrogel with time-dependent enhancement in viscosity is developed for combined melanoma therapy and antibacterial wound healing acceleration. The multifunctional hydrogel is prepared through the chemical crosslinking between poly(methyl vinyl ether-alt-maleic acid) and gelatin, followed by the incorporation of CuO nanosheets and allantoin. The synergistic inherent antibacterial potential of CuO nanosheets, the regenerative and smoothing effect of allantoin, the extracellular matrix-mimicking effect of gelatin, and the desirable swelling behavior of the hydrogel results in fast wound recovery after photothermal ablation of the tumor. Additionally, the hydrogel can serve as an alternative to sutures owing to its tissue adhesiveness ability, which can further render it the merits for accelerated repair of abdominal lesions while acting as a biocompatible barrier to prevent peritoneal adhesion.

2.
Heliyon ; 10(4): e25878, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384564

RESUMEN

Bone tissue engineering (BTE) involves the design of three-dimensional (3D) scaffolds that aim to address current challenges of bone defect healing, such as limited donor availability, disease transmission risks, and the necessity for multiple invasive surgeries. Scaffolds can mimic natural bone structure to accelerate the mechanisms involved in the healing process. Herein, a crosslinked combination of biopolymers, including gelatin (GEL), chitosan (CS), and hyaluronic acid (HA), loaded with diatom (Di) and ß-sitosterol (BS), is used to produce GCH-Di-S scaffold by freeze-drying method. The GCH scaffold possesses a uniform structure, is biodegradable and biocompatible, and exhibits high porosity and interconnected pores, all required for effective bone repair. The incorporation of Di within the scaffold contributes to the adjustment of porosity and degradation, as well as effectively enhancing the mechanical property and biomineralization. In vivo studies have confirmed the safety of the scaffold and its potential to stimulate the creation of new bone tissue. This is achieved by providing an osteoconductive platform for cell attachment, prompting calcification, and augmenting the proliferation of osteoblasts, which further contributes to angiogenesis and anti-inflammatory effects of BS.

3.
Acta Biomater ; 171: 350-362, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708925

RESUMEN

Insulin aspart (IAsp) and insulin degludec (IDeg), as the third generation of insulin, have a faster onset time or a more durable action period, which may simulate the secretion of insulin under physiological conditions. Microneedles (MNs) are transdermal delivery devices that may allow diabetic patients to easily deploy transdermal insulin therapy while considerably reducing injection pain. In this study, we investigated the combination of dissolving MNs with IAsp or IDeg therapy as an alternative to daily multiple insulin injections, aiming to improve glycemic control and patient compliance. Mechanical properties of the MNs, structural stability of insulin encapsulated in the MNs, and transdermal application characteristics were studied to assess the practicality of insulin-loaded MNs for diabetes therapy. In vivo experiments conducted on diabetic rats demonstrated that the IAsp- and IDeg-loaded MNs have comparable blood glucose control abilities to that of subcutaneous injections. In addition, the therapeutic properties of insulin-loaded MNs under diverse dietary conditions and application strategies were further investigated to provide new information to support future clinical trials. Taken together, the proposed MNs have the potential to improve balances between glycemic control, hypoglycemia risk, and convenience, providing patients with simpler regimens. STATEMENT OF SIGNIFICANCE: 1. The fabricated functional insulin-loaded dissolving microneedles closely matched the glucose rise that occurs in response to meals, demonstrating promising alternatives for multiple daily insulin injections. 2. The hypoglycemic properties of insulin microneedles were investigated under diverse dietary conditions and application strategies, yielding new information to support future clinical trials. 3. Molecular dynamics simulations were utilized to study the interactions between the insulin and microneedle matrix materials, providing a strategy for theoretically understanding drug stability as well as the release mechanism of drug-loaded microneedles.


Asunto(s)
Diabetes Mellitus Experimental , Insulina Aspart , Humanos , Ratas , Animales , Insulina Aspart/uso terapéutico , Control Glucémico , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes , Insulina/farmacología , Glucemia
4.
Adv Drug Deliv Rev ; 200: 115050, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37549847

RESUMEN

Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.


Asunto(s)
Materiales Biocompatibles , Rechazo de Injerto , Humanos , Rechazo de Injerto/prevención & control , Inmunosupresores/uso terapéutico , Inmunomodulación , Supervivencia de Injerto
5.
Mater Today Bio ; 19: 100609, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36969694

RESUMEN

Intravenously administered nanocarriers suffer from off-target distribution, pre-targeting drug leakage, and rapid clearance, limiting their efficiency in tumor eradication. To bypass these challenges, an injectable hydrogel with time- and temperature-dependent viscosity enhancement behavior and self-healing property are reported to assist in the retention of the hydrogel in the tumor site after injection. The cancer cell membrane (CCM) and sorafenib are embedded into the hydrogel to elicit local tumor-specific immune responses and induce cancer cell apoptosis, respectively. In addition, hyaluronic acid (HA) coated Bi2S3 nanorods (BiH) are incorporated within the hydrogel to afford prolonged multi-cycle local photothermal therapy (PTT) due to the reduced diffusion of the nanorods to the surrounding tissues as a result of HA affinity toward cancer cells. The results show the promotion of immunostimulatory responses by both CCM and PTT through the release of inflammatory cytokines from immune cells, which allows localized and complete ablation of the breast tumor in an animal model by a single injection of the hydrogel. Moreover, the BiH renders strong antibacterial activity to the hydrogel, which is crucial for the clinical translation of injectable hydrogels as it minimizes the risk of infection in the post-cancer lesion formed by PTT-mediated cancer therapy.

6.
Biomater Sci ; 11(7): 2486-2503, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779258

RESUMEN

Photothermal therapy (PTT) is a promising approach for treating cancer. However, it suffers from the formation of local lesions and subsequent bacterial infection in the damaged area. To overcome these challenges, the strategy of mild PTT following the high-temperature ablation of tumors is studied to achieve combined tumor suppression, wound healing, and bacterial eradication using a hydrogel. Herein, Bi2S3 nanorods (NRs) are employed as a photothermal agent and coated with hyaluronic acid to obtain BiH NRs with high colloidal stability. These NRs and allantoin are loaded into an injectable Fe3+-coordinated hydrogel composed of sodium alginate (Alg) and Farsi gum (FG), which is extracted from Amygdalus scoparia Spach. The hydrogel can be used for localized cancer therapy by high-temperature PTT, followed by wound repair through the combination of mild hyperthermia and allantoin-mediated induction of cell proliferation. In addition, an outstanding blood clotting effect is observed due to the water-absorbing ability and negative charge of FG and Alg as well as the porous structure of hydrogels. The hydrogels also eradicate infection owing to the local heat generation and intrinsic antimicrobial activity of the NRs. Lastly, in vivo studies reveal an efficient photothermal-based tumor eradication and accelerated wound healing by the hydrogel.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Hidrogeles/química , Alantoína , Calefacción , Cicatrización de Heridas , Neoplasias/tratamiento farmacológico , Metales , Antibacterianos/farmacología , Antibacterianos/química
7.
Expert Opin Drug Deliv ; 19(9): 1061-1080, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35953890

RESUMEN

INTRODUCTION: Three-dimensional (3D) printing, also known as additive manufacturing (AM), is a modern technique/technology, which makes it possible to construct 3D objects from computer-aided design (CAD) digital models. This technology can be used in the progress of drug delivery systems, where porosity has played important role in attaining an acceptable level of biocompatibility and biodegradability with improved therapeutic effects. 3D printing may also provide the user possibility to control the dosage of each ingredient in order to a specific purpose, and makes it probable to improve the formulation of drug delivery systems. AREAS COVERED: This article covers the 3D printing technologies, bioactive materials including natural and synthetic polymers as well as some ceramics and minerals and their roles in drug delivery systems. EXPERT OPINION: This technology is feasible to fabricate drug products by incorporating multiple drugs in different parts in such a mode that these drugs can release from the section at a predetermined rate. Furthermore, this 3D printing technology has the potential to transform personalized therapy to various age-groups by design flexibility and precise dosing. In recent years, the potential use of this technology can be realized in a clinical situation where patients will acquire individualized medicine as per their requirement.


Asunto(s)
Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Humanos , Preparaciones Farmacéuticas , Polímeros , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA