Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 68(18)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37579761

RESUMEN

Objective.Laser plasma-based accelerators (LPAs) of protons can contribute to research of ultra-high dose rate radiobiology as they provide pulse dose rates unprecedented at medical proton sources. Yet, LPAs pose challenges regarding precise and accurate dosimetry due to the high pulse dose rates, but also due to the sources' lower spectral stability and pulsed operation mode. Forin vivomodels, further challenges arise from the necessary small field dosimetry for volumetric dose distributions. For these novel source parameters and intended applications, a dosimetric standard needs to be established.Approach.In this work, we present a dosimetry and beam monitoring framework forin vivoirradiations of small target volumes with LPA protons, solving aforementioned challenges. The volumetric dose distribution in a sample (mean dose value and lateral/depth dose inhomogeneity) is provided by combining two independent dose measurements using radiochromic films (dose rate-independent) and ionization chambers (dose rate-dependent), respectively. The unique feature of the dosimetric setup is beam monitoring with a transmission time-of-flight spectrometer to quantify spectral fluctuations of the irradiating proton pulses. The resulting changes in the depth dose profile during irradiation of anin vivosample are hence accessible and enable pulse-resolved depth dose correction for each dose measurement.Main results.A first successful small animal pilot study using an LPA proton source serves as a testcase for the presented dosimetry approach and proves its performance in a realistic setting.Significance.With several facilities worldwide either setting up or already using LPA infrastructure for radiobiological studies with protons, the importance of LPA-adapted dosimetric frameworks as presented in this work is clearly underlined.


Asunto(s)
Protones , Radiometría , Animales , Proyectos Piloto , Radiometría/métodos , Rayos Láser , Radiobiología , Dosimetría por Película/métodos
2.
Sci Rep ; 12(1): 21488, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509788

RESUMEN

Application experiments with laser plasma-based accelerators (LPA) for protons have to cope with the inherent fluctuations of the proton source. This creates a demand for non-destructive and online spectral characterization of the proton pulses, which are for application experiments mostly spectrally filtered and transported by a beamline. Here, we present a scintillator-based time-of-flight (ToF) beam monitoring system (BMS) for the recording of single-pulse proton energy spectra. The setup's capabilities are showcased by characterizing the spectral stability for the transport of LPA protons for two beamline application cases. For the two beamline settings monitored, data of 122 and 144 proton pulses collected over multiple days were evaluated, respectively. A relative energy uncertainty of 5.5% (1[Formula: see text]) is reached for the ToF BMS, allowing for a Monte-Carlo based prediction of depth dose distributions, also used for the calibration of the device. Finally, online spectral monitoring combined with the prediction of the corresponding depth dose distribution in the irradiated samples is demonstrated to enhance applicability of plasma sources in dose-critical scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...