Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042487

RESUMEN

The meniscus regeneration can present major challenges such as mimicking tissue microstructuration or triggering cell regeneration. In the case of lesions that require a personalized approach, photoprinting offers the possibility of designing resolutive biomaterial structures. The photo-cross-linkable ink composition determines the process ease and the final network properties. In this study, we designed a range of hybrid inks composed of gelatin(G) and 6-PLA arms(P) that were photo-cross-linked using tyramine groups. The photo-cross-linking efficiency, mechanical properties, degradation, and biological interactions of inks with different G/P mass ratios were studied. The G50P50 network properties were suitable for meniscus regeneration, with Young's modulus of 6.5 MPa, degradation in 2 months, and good cell proliferation. We then confirmed the potential of these inks to produce high-resolution microstructures by printing well-defined microstructures using two-photon polymerization. These hybrid inks offer new perspectives for biocompatible, degradable, and microstructured tissue engineering scaffold creation.

2.
Colloids Surf B Biointerfaces ; 241: 114039, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879896

RESUMEN

Thin films have been identified as an alternative approach for targeting sensitive site as drug delivery tool. In this work, the preparation of self-rolling thin films to form tubes for wound healing and easy placement (e.g. in the colon via colonoscopy) have been studied. We explored the use of thin films as a protective dressing combined to local release of an anti-inflammatory in order to improve drug efficacy and limit the side effects of the oral route. Non-cytotoxic poly(ethylene) glycol and poly(lactic acid) photo-crosslinkable star copolymers were used for rapid UV crosslinking of bilayered films loaded with prednisolone. The films, crosslinked under UV lamp without the need of photoinitiator, are optimized and compared in terms of water uptake, swelling ratio, final tube diameter and morphology, anti-inflammatory drug loading and release. Our studies showed the spontaneous rolling of bilayer constructs directly after immersion in water. Tubular geometry allows application of the patch through minimally invasive procedures such as colonoscopy. Moreover, the rolled-up bilayers highlighted efficient release of encapsulated drug following Fickian diffusion mechanism. We also confirmed the anti-inflammatory activity of the released anti-inflammatory drug that inhibits the pro-inflammatory cytokine IL-1ß in RAW 264.7 macrophages stimulated by Escherichia coli (E. coli).

3.
Biomater Sci ; 12(11): 2960-2977, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38682257

RESUMEN

Focusing on the regeneration of damaged knee meniscus, we propose a hybrid scaffold made of poly(ester-urethane) (PEU) and collagen that combines suitable mechanical properties with enhanced biological integration. To ensure biocompatibility and degradability, the degradable PEU was prepared from a poly(ε-caprolactone), L-lysine diisocyanate prepolymer (PCL di-NCO) and poly(lactic-co-glycolic acid) diol (PLGA). The resulting PEU (Mn = 52 000 g mol-1) was used to prepare porous scaffolds using the solvent casting (SC)/particle leaching (PL) method at an optimized salt/PEU weight ratio of 5 : 1. The morphology, pore size and porosity of the scaffolds were evaluated by SEM showing interconnected pores with a uniform size of around 170 µm. Mechanical properties were found to be close to those of the human meniscus (Ey ∼ 0.6 MPa at 37 °C). To enhance the biological properties, incorporation of collagen type 1 (Col) was then performed via soaking, injection or forced infiltration. The latter yielded the best results as shown by SEM-EDX and X-ray tomography analyses that confirmed the morphology and highlighted the efficient pore Col-coating with an average of 0.3 wt% Col in the scaffolds. Finally, in vitro L929 cell assays confirmed higher cell proliferation and an improved cellular affinity towards the proposed scaffolds compared to culture plates and a gold standard commercial meniscal implant.


Asunto(s)
Menisco , Poliésteres , Poliuretanos , Andamios del Tejido , Andamios del Tejido/química , Porosidad , Poliésteres/química , Poliuretanos/química , Animales , Humanos , Colágeno/química , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
4.
Compr Rev Food Sci Food Saf ; 23(2): e13306, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369928

RESUMEN

Biobased natural polymers, including polymers of natural origin such as casein, are growing rapidly in the light of the environmental pollution caused by many mass-produced commercial synthetic polymers. Although casein has interesting intrinsic properties, especially for the food industry, numerous chemical reactions have been carried out to broaden the range of its properties, most of them preserving casein's nontoxicity and biodegradability. New conjugates and graft copolymers have been developed especially by Maillard reaction of the amine functions of the casein backbone with the aldehyde functions of sugars, polysaccharides, or other molecules. Carried out with dialdehydes, these reactions lead to the cross-linking of casein giving three-dimensional polymers. Acylation and polymerization of various monomers initiated by amine functions are also described. Other reactions, far less numerous, involve alcohol and carboxylic acid functions in casein. This review provides an overview of casein-based conjugates and graft copolymers, their properties, and potential applications.


Asunto(s)
Caseínas , Polímeros , Caseínas/química , Polímeros/química , Polisacáridos/química , Aminas
5.
Molecules ; 29(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398518

RESUMEN

To develop an orthopedic scaffold that could overcome the limitations of implants used in clinics, we designed poly(ester-urethane) foams and compared their properties with those of a commercial gold standard. A degradable poly(ester-urethane) was synthetized by polyaddition between a diisocyanate poly(ε-caprolactone) prepolymer (PCL di-NCO, Mn = 2400 g·mol-1) and poly(lactic-co-glycolic acid) diol (PLGA, Mn = 2200 g·mol-1) acting as a chain extender. The resulting high-molecular-weight poly(ester-urethane) (PEU, Mn = 87,000 g·mol-1) was obtained and thoroughly characterized by NMR, FTIR and SEC-MALS. The porous scaffolds were then processed using the solvent casting (SC)/particle leaching (PL) method with different NaCl crystal concentrations. The morphology, pore size and porosity of the foams were evaluated using SEM, showing interconnected pores with a uniform size of around 150 µm. The mechanical properties of the scaffolds are close to those of the human meniscus (Ey = 0.5~1 MPa). Their degradation under accelerated conditions confirms that incorporating PLGA into the scaffolds greatly accelerates their degradation rate compared to the gold-standard implant. Finally, a cytotoxicity study confirmed the absence of the cytotoxicity of the PEU, with a 90% viability of the L929 cells. These results suggest that degradable porous PLGA/PCL poly(ester-urethane) has potential in the development of meniscal implants.


Asunto(s)
Materiales Biocompatibles , Caproatos , Lactonas , Poliuretanos , Humanos , Poliuretanos/química , Materiales Biocompatibles/química , Poliglactina 910 , Porosidad , Poliésteres/química , Ésteres , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
6.
JPhys Mater ; 7(1): 012502, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38144214

RESUMEN

This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.

7.
Biomacromolecules ; 24(8): 3472-3483, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37458381

RESUMEN

The development of dynamic covalent chemistry opens the way to the design of materials able to be reprocessed by an internal exchange reaction under thermal stimulus. Imine exchange differs from other exchange reactions by its relatively low temperature of activation. In this study, amine-functionalized star-shaped PEG-PLA and an aldehyde-functionalized hydroxyurethane modifier were combined to produce PEG-PLA/hydroxyurethane networks incorporating imine bonds. The thermal and mechanical properties of these new materials were evaluated as a function of the initial ratio of amine/aldehyde used during synthesis. Rheological analyses highlighted the dynamic behavior of these vitrimers at moderate temperature (60-85 °C) and provided the flow activation energies. Additionally, the reprocessability of these PEG-PLA/hydroxyurethane vitrimers was assessed by comparing the material properties before reshaping and after three reprocessing cycles (1 ton, 1 h, 70 °C). Hence, these materials can easily be designed to satisfy a specific medical application without properties loss. This work opens the way to the development of a new generation of dynamic materials combining degradable PEG-PLA copolymers and hydroxyurethane modifiers, which could find applications in the shape of medical devices on-demand under mild conditions.


Asunto(s)
Materiales Biocompatibles , Iminas , Poliésteres/química , Polietilenglicoles/química
8.
Biomacromolecules ; 24(10): 4494-4501, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36958008

RESUMEN

Porous chitosan materials as potential wound dressings were prepared via dissolution of chitosan, nonsolvent-induced phase separation in NaOH-water, formation of a hydrogel, and either freeze-drying or supercritical CO2 drying, leading to "cryogels" and "aerogels", respectively. The hydrophilic drug dexamethasone sodium phosphate was loaded by impregnation of chitosan hydrogel, and the release from cryogel or aerogel was monitored at two pH values relevant for wound healing. The goal was to compare the drug-loading efficiency and release behavior from aerogels and cryogels as a function of the drying method, the materials' physicochemical properties (density, morphology), and the pH of the release medium. Cryogels exhibited a higher loading efficiency and a faster release in comparison with aerogels. A higher sample density and lower pH value of the release medium resulted in a more sustained release in the case of aerogels. In contrast, for cryogels, the density and pH of the release medium did not noticeably influence release kinetics. The Korsmeyer-Peppas model showed the best fit to describe the release from the porous chitosan materials into the different media.


Asunto(s)
Quitosano , Criogeles , Criogeles/química , Quitosano/química , Porosidad , Liofilización
9.
ACS Appl Polym Mater ; 5(2): 1364-1373, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36817337

RESUMEN

The formation of hybrid hydrogel-elastomer scaffolds is an attractive strategy for the formation of tissue engineering constructs and microfabricated platforms for advanced in vitro models. The emergence of thiol-ene coupling, in particular radical-based, for the engineering of cell-instructive hydrogels and the design of elastomers raises the possibility of mechanically integrating these structures without relying on the introduction of additional chemical moieties. However, the bonding of hydrogels (thiol-ene radical or more classic acrylate/methacrylate radical-based) to thiol-ene elastomers and alkene-functional elastomers has not been characterized in detail. In this study, we quantify the tensile mechanical properties of hybrid hydrogel samples formed of two elastomers bonded to a hydrogel material. We examine the impact of radical thiol-ene coupling on the crosslinking of both elastomers (silicone or polyesters) and hydrogels (based on thiol-ene crosslinking or diacrylate chemistry) and on the mechanics and failure behavior of the resulting hybrids. This study demonstrates the strong bonding of thiol-ene hydrogels to alkene-presenting elastomers with a range of chemistries, including silicones and polyesters. Overall, thiol-ene coupling appears as an attractive tool for the generation of strong, mechanically integrated, hybrid structures for a broad range of applications.

10.
ACS Appl Mater Interfaces ; 15(1): 2077-2091, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36565284

RESUMEN

In the biomedical field, degradable chemically crosslinked elastomers are interesting materials for tissue engineering applications, since they present rubber-like mechanical properties matching those of soft tissues and are able to preserve their three-dimensional (3D) structure over degradation. Their use in biomedical applications requires surgical handling and implantation that can be a source of accidental damages responsible for the loss of properties. Therefore, their inability to be healed after damage or breaking can be a major drawback. In this work, biodegradable dual-crosslinked networks that exhibit fast and efficient self-healing properties at 37 °C are designed. Self-healable dual-crosslinked (chemically and physically) elastomeric networks are prepared by two methods. The first approach is based on the mix of hydrophobic poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) star-shaped copolymers functionalized with either catechol or methacrylate moieties. In the second approach, hydrophobic bifunctional PEG-PLA star-shaped copolymers with both catechol and methacrylate on their structure are used. In the two systems, the supramolecular network is responsible for the self-healing properties, thanks to the dynamic dissociation/reassociation of the numerous hydrogen bonds between the catechol groups, whereas the covalent network ensures mechanical properties similar to pure methacrylate networks. The self-healable materials display mechanical properties that are compatible with soft tissues and exhibit linear degradation because of the chemical cross-links. The performances of networks from mixed copolymers versus bifunctional copolymers are compared and demonstrate the superiority of the latter. The biocompatibility of the materials is also demonstrated, confirming the potential of these degradable and self-healable elastomeric networks to be used for the design of temporary medical devices.


Asunto(s)
Polietilenglicoles , Polímeros , Polímeros/química , Polietilenglicoles/química , Metacrilatos , Catecoles
11.
Biomacromolecules ; 24(10): 4430-4443, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36524541

RESUMEN

Tissue adhesives are interesting materials for wound treatment as they present numerous advantages compared to traditional methods of wound closure such as suturing and stapling. Nowadays, fibrin and cyanoacrylate glues are the most widespread commercial biomedical adhesives, but these systems display some drawbacks. In this study, degradable bioadhesives based on PEG-PLA star-shaped hydrogels are designed. Acrylate, methacrylate, and catechol functional copolymers are synthesized and used to design various bioadhesive hydrogels. Various types of mechanisms responsible for adhesion are investigated (physical entanglement and interlocking, physical interactions, chemical bonds), and the adhesive properties of the different systems are first studied on a gelatin model and compared to fibrin and cyanoacrylate references. Hydrogels based on acrylate and methacrylate reached adhesion strength close to cyanoacrylate (332 kPa) with values of 343 and 293 kPa, respectively, whereas catechol systems displayed higher values (11 and 19 kPa) compared to fibrin glue (7 kPa). Bioadhesives were then tested on mouse skin and human cadaveric colonic tissue. The results on mouse skin confirmed the potential of acrylate and methacrylate gels with adhesion strength close to commercial glues (15-30 kPa), whereas none of the systems led to high levels of adhesion on the colon. These data confirm that we designed a family of degradable bioadhesives with adhesion strength in the range of commercial glues. The low level of cytotoxicity of these materials is also demonstrated and confirm the potential of these hydrogels to be used as surgical adhesives.


Asunto(s)
Hidrogeles , Adhesivos Tisulares , Ratones , Animales , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/química , Adhesivos/farmacología , Cianoacrilatos , Fibrina , Catecoles , Metacrilatos
12.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364164

RESUMEN

Synthetic biopolymers are attractive alternatives to biobased polymers, especially because they rarely induce an immune response in a living organism. Poly ε-caprolactone (PCL) is a well-known synthetic aliphatic polyester universally used for many applications, including biomedical and environmental ones. Unlike poly lactic acid (PLA), PCL has no chiral atoms, and it is impossible to play with the stereochemistry to modify its properties. To expand the range of applications for PCL, researchers have investigated the possibility of grafting polymer chains onto the PCL backbone. As the PCL backbone is not functionalized, it must be first functionalized in order to be able to graft reactive groups onto the PCL chain. These reactive groups will then allow the grafting of new reagents and especially new polymer chains. Grafting of polymer chains is mainly carried out by "grafting from" or "grafting onto" methods. In this review we describe the main structures of the graft copolymers produced, their different synthesis methods, and their main characteristics and applications, mainly in the biomedical field.


Asunto(s)
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Caproatos/química , Lactonas/química
13.
Biomacromolecules ; 23(10): 4388-4400, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36170117

RESUMEN

This work reports on a novel polyester copolymer containing poly(dopamine), a synthetic analogue of natural melanin, evaluated in a sustained-release drug delivery system for ocular intravitreal administration of drugs. More specifically, a graft copolymer of poly(ε-caprolactone)-graft-poly(dopamine) (PCL-g-PDA) has been synthesized and was shown to further extend the drug release benefits of state-of-the-art biodegradable intravitreal implants composed of poly(lactide) and poly(lactide-co-glycolide). The innovative biomaterial combines the documented drug-binding properties of melanin naturally present in the eye, with the established ocular tolerability and biodegradation of polyester implants. The PCL-g-PDA copolymer was obtained by a two-step modification of PCL with a final PDA content of around 2-3 wt % and was fully characterized by size exclusion chromatography, NMR, and diffusion ordered NMR spectroscopy. The thermoplastic nature of PCL-g-PDA allowed its simple processing by hot-melt compression molding to prepare small implants. The properties of unmodified PCL and PCL-g-PDA implants were studied and compared in terms of thermal properties (differential scanning calorimetry), thermal stability (thermogravimetry analysis), degradability, and in vitro cytotoxicity. PCL and PCL-g-PDA implants exhibited similar degradation properties in vitro and were both stable under physiological conditions over 110 days. Likewise, both materials were non-cytotoxic toward L929 and ARPE-19 cells. The drug loading and in vitro release properties of the new materials were investigated with dexamethasone (DEX) and ciprofloxacin hydrochloride (CIP) as representative drugs featuring low and high melanin-binding affinities, respectively. In comparison to unmodified PCL, PCL-g-PDA implants showed a significant extension of drug release, most likely because of specific drug-catechol interaction with the PDA moieties of the copolymer. The present study confirms the advantages of designing PDA-containing polyesters as a class of biodegradable and biocompatible thermoplastics that can modulate and remarkably extend the drug release kinetics thanks to their unique drug-binding properties, especially, but not limited to, for ocular applications.


Asunto(s)
Melaninas , Poliglactina 910 , Materiales Biocompatibles , Catecoles , Ciprofloxacina , Preparaciones de Acción Retardada/farmacología , Dexametasona , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Indoles , Poliésteres/química , Polietilenglicoles/química , Polímeros
14.
Pharmaceutics ; 14(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36145603

RESUMEN

Cardiovascular diseases are the leading cause of death globally. Myocardial infarction in particular leads to a high rate of mortality, and in the case of survival, to a loss of myocardial functionality due to post-infarction necrosis. This functionality can be restored by cell therapy or biomaterial implantation, and the need for a rapid regeneration has led to the development of bioactive patches, in particular through the incorporation of growth factors (GF). In this work, we designed hybrid patches composed of polymer nanofibers loaded with HGF and IGF and associated with a collagen membrane. Among the different copolymers studied, the polymers and their porogens PLA-Pluronic-PLA + PEG and PCL + Pluronic were selected to encapsulate HGF and IGF. While 89 and 92% of IGF were released in 2 days, HGF was released up to 58% and 50% in 35 days from PLA-Pluronic-PLA + PEG and PCL + Pluronic nanofibers, respectively. We also compared two ways of association for the loaded nanofibers and the collagen membrane, namely a direct deposition of the nanofibers on a moisturized collagen membrane (wet association), or entrapment between collagen layers (sandwich association). The interfacial cohesion and the degradation properties of the patches were evaluated. We also show that the sandwich association decreases the burst release of HGF while increasing the release efficiency. Finally, we show that the patches are cytocompatible and that the presence of collagen and IGF promotes the proliferation of C2C12 myoblast cells for 11 days. Taken together, these results show that these hybrid patches are of interest for cardiac muscle regeneration.

15.
ACS Appl Mater Interfaces ; 14(38): 43719-43731, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121931

RESUMEN

In the biomedical field, self-rolling materials provide interesting opportunities to develop medical devices suitable for drug or cell encapsulation. However, to date, a major limitation for medical applications is the use of non-biodegradable and non-biocompatible polymers that are often reported for such applications or the slow actuation witnessed with degradable systems. In this work, biodegradable self-rolling tubes that exhibit a spontaneous and rapid actuation when immersed in water are designed. Photo-crosslinkable hydrophilic and hydrophobic poly(ethylene glycol)-poly(lactide) (PEG-PLA) star-shaped copolymers are prepared and used to prepare bilayered constructs. Thanks to the discrete mechanical and swelling properties of each layer and the cohesive/gradual nature of the interface, the resulting bilayered films are able to self-roll in water in less than 30 s depending on the nature of the hydrophilic layer and on the shape of the sample. The cytocompatibility and degradability of the materials are demonstrated and confirm the potential of such self-rolling resorbable biomaterials in the field of temporary medical devices.


Asunto(s)
Elastómeros , Hidrogeles , Implantes Absorbibles , Materiales Biocompatibles/química , Elastómeros/química , Poliésteres/química , Polietilenglicoles/química , Polímeros/química , Agua/química
16.
Molecules ; 27(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807380

RESUMEN

As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and has less impact resistance than petroleum-based plastics. To improve the mechanical properties of PLA, PLA-based blends are very often used, but the outcome does not meet expectations because of the non-compatibility of the polymer blends. From a chemical point of view, the use of graft copolymers as a compatibilizer with a PLA backbone bearing side chains is an interesting option for improving the compatibility of these blends, which remains challenging. This review article reports on the various graft copolymers based on a PLA backbone and their syntheses following two chemical strategies: the synthesis and polymerization of modified lactide or direct chemical post-polymerization modification of PLA. The main applications of these PLA graft copolymers in the environmental and biomedical fields are presented.


Asunto(s)
Materiales Biocompatibles , Petróleo , Materiales Biocompatibles/química , Plásticos , Poliésteres/química , Polímeros/química
17.
Int J Biol Macromol ; 202: 215-223, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35033531

RESUMEN

Highly porous chitosan-based materials were prepared via dissolution, non-solvent induced phase separation and drying using different methods. The goal was to tune the morphology and properties of chitosan porous materials by varying process parameters. Chitosan concentration, concentration of sodium hydroxide in the coagulation bath and aging time were varied. Drying was performed via freeze-drying leading to "cryogels" or via drying with supercritical CO2 leading to "aerogels". Cryogels were of lower density than aerogels (0.03-0.12 g/cm3vs 0.07-0.26 g/cm3, respectively) and had a lower specific surface area (50-70 vs 200-270 m2/g, respectively). The absorption of simulated wound exudate by chitosan aerogels and cryogels was studied in view of their potential applications as wound dressing. Higher absorption was obtained for cryogels (530-1500%) as compared to aerogels (200-610%).


Asunto(s)
Quitosano , Criogeles , Desecación/métodos , Liofilización/métodos , Porosidad
18.
Mater Sci Eng C Mater Biol Appl ; 129: 112339, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579931

RESUMEN

Electrospun scaffolds combine suitable structural characteristics that make them strong candidates for their use in tissue engineering. These features can be tailored to optimize other physiologically relevant attributes (e.g. mechanical anisotropy and cellular affinity) while ensuring adequate degradation rates of the biomaterial. Here, we present the fabrication of microstructured scaffolds by using a combination of micropatterned electrospinning collectors (honeycomb- or square-patterned) and poly(lactic acid) (PLA)-based copolymers (linear or star-shaped). The resulting materials showed appropriate macropore size and fiber alignment that were key parameters to enhance their anisotropic properties in protraction. Moreover, their elastic modulus, which was initially similar to that of soft tissues, gradually changed in hydrolytic conditions, matching the degradation profile in a 2- to 3-month period. Finally, honeycomb-structured scaffolds exhibited enhanced cellular proliferation compared to standard electrospun mats, while cell colonization was shown to be guided by the macropore contour. Taking together, these results provide new insight into the rational design of microstructured materials that can mimic the progressive evolution of properties in soft tissue regeneration.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Anisotropía , Materiales Biocompatibles , Poliésteres
19.
Biomater Sci ; 9(18): 6203-6213, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34350906

RESUMEN

There is a growing interest in magnetic nanocomposites in biomaterials science. In particular, nanocomposites that combine poly(lactide) (PLA) nanofibers and superparamagnetic iron oxide nanoparticles (SPIONs), which can be obtained by either electrospinning of a SPION suspension in PLA or by precipitating SPIONs at the surface of PLA, are well documented in the literature. However, these two classical processes yield nanocomposites with altered materials properties, and their long-term in vivo fate and performances have in most cases only been evaluated over short periods of time. Recently, we reported a new strategy to prepare well-defined PLA@SPION nanofibers with a quasi-monolayer of SPIONs anchored at the surface of PLA electrospun fibers. Herein, we report on a 6-month in vivo rat implantation study with the aim of evaluating the long-term magnetic resonance imaging (MRI) properties of this new class of magnetic nanocomposites, as well as their tissue integration and degradation. Using clinically relevant T2-weighted MRI conditions, we show that the PLA@SPION nanocomposites are clearly visible up to 6 months. We also evaluate here by histological analyses the slow degradation of the PLA@SPIONs, as well as their biocompatibility. Overall, these results make these nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.


Asunto(s)
Nanopartículas de Magnetita , Nanocompuestos , Animales , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética , Poliésteres , Ratas
20.
Acta Biomater ; 131: 302-313, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34271170

RESUMEN

Magnetic fiber composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and electrospun fibers have shown promise in tissue engineering fields. Controlled grafting of SPIONs to the fibers post-electrospinning generates biocompatible magnetic composites without altering desired fiber morphology. Here, for the first time, we assess the potential of SPION-grafted scaffolds combined with magnetic fields to promote neurite outgrowth by providing contact guidance from the aligned fibers and mechanical stimulation from the SPIONs in the magnetic field. Neurite outgrowth from primary rat dorsal root ganglia (DRG) was assessed from explants cultured on aligned control and SPION-grafted electrospun fibers as well as on non-grafted fibers with SPIONs dispersed in the culture media. To determine the optimal magnetic field stimulation to promote neurite outgrowth, we generated a static, alternating, and linearly moving magnet and simulated the magnetic flux density at different areas of the scaffold over time. The alternating magnetic field increased neurite length by 40% on control fibers compared to a static magnetic field. Additionally, stimulation with an alternating magnetic field resulted in a 30% increase in neurite length and 62% increase in neurite area on SPION-grafted fibers compared to DRG cultured on PLLA fibers with untethered SPIONs added to the culture media. These findings demonstrate that SPION-grafted fiber composites in combination with magnetic fields are more beneficial for stimulating neurite outgrowth on electrospun fibers than dispersed SPIONs. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers improve axonal regeneration by acting as a passive guidance cue but do not actively interact with cells, while magnetic nanoparticles can be remotely manipulated to interact with neurons and elicit neurite outgrowth. Here, for the first time, we examine the combination of magnetic fields, magnetic nanoparticles, and aligned electrospun fibers to enhance neurite outgrowth. We show an alternating magnetic field alone increases neurite outgrowth on aligned electrospun fibers. However, combining the alternating field with magnetic nanoparticle-grafted fibers does not affect neurite outgrowth compared to control fibers but improves outgrowth compared to freely dispersed magnetic nanoparticles. This study provides the groundwork for utilizing magnetic electrospun fibers and magnetic fields as a method for promoting axonal growth.


Asunto(s)
Ganglios Espinales , Andamios del Tejido , Animales , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Neuritas , Proyección Neuronal , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...