Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 796, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145082

RESUMEN

Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex.


Asunto(s)
Anopheles/genética , Infertilidad , Malaria/transmisión , Mosquitos Vectores/genética , Animales , Teorema de Bayes , Burkina Faso , Insecticidas , Masculino , Control de Mosquitos/métodos , Densidad de Población
2.
World J Stem Cells ; 11(11): 904-919, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31768219

RESUMEN

Both parasitology and stem cell research are important disciplines in their own right. Parasites are a real threat to human health causing a broad spectrum of diseases and significant annual rates morbidity and mortality globally. Stem cell research, on the other hand, focuses on the potential for regenerative medicine for a range of diseases including cancer and regenerative therapies. Though these two topics might appear distant, there are some "unexpected encounters". In this review, we summarise the various links between parasites and stem cells. First, we discuss how parasites' own stem cells represent interesting models of regeneration that can be translated to human stem cell regeneration. Second, we explore the interactions between parasites and host stem cells during the course of infection. Third, we investigate from a clinical perspective, how stem cell regeneration can be exploited to help circumvent the damage induced by parasitic infection and its potential to serve as treatment options for parasitic diseases in the future. Finally, we discuss the importance of screening for pathogens during organ transplantation by presenting some clinical cases of parasitic infection following stem cell therapy.

3.
Artículo en Inglés | MEDLINE | ID: mdl-29311059

RESUMEN

G-quadruplexes are DNA or RNA secondary structures that can be formed from guanine-rich nucleic acids. These four-stranded structures, composed of stacked quartets of guanine bases, can be highly stable and have been demonstrated to occur in vivo in the DNA of human cells and other systems, where they play important biological roles, influencing processes such as telomere maintenance, DNA replication and transcription, or, in the case of RNA G-quadruplexes, RNA translation and processing. We report for the first time that DNA G-quadruplexes can be detected in the nuclei of the malaria parasite Plasmodium falciparum, which has one of the most A/T-biased genomes sequenced and therefore possesses few guanine-rich sequences with the potential to form G-quadruplexes. We show that despite this paucity of putative G-quadruplex-forming sequences, P. falciparum parasites are sensitive to several G-quadruplex-stabilizing drugs, including quarfloxin, which previously reached phase 2 clinical trials as an anticancer drug. Quarfloxin has a rapid initial rate of kill and is active against ring stages as well as replicative stages of intraerythrocytic development. We show that several G-quadruplex-stabilizing drugs, including quarfloxin, can suppress the transcription of a G-quadruplex-containing reporter gene in P. falciparum but that quarfloxin does not appear to disrupt the transcription of rRNAs, which was proposed as its mode of action in both human cells and trypanosomes. These data suggest that quarfloxin has potential for repositioning as an antimalarial with a novel mode of action. Furthermore, G-quadruplex biology in P. falciparum may present a target for development of other new antimalarial drugs.


Asunto(s)
Antimaláricos/farmacología , G-Cuádruplex/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Malaria Falciparum/microbiología
4.
World J Stem Cells ; 8(3): 88-100, 2016 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-27022439

RESUMEN

The recent development of stem cell research and the possibility of generating cells that can be stably and permanently modified in their genome open a broad horizon in the world of in vitro modeling. The malaria field is gaining new opportunities from this important breakthrough and novel tools were adapted and opened new frontiers for malaria research. In addition to the new in vitro systems, in recent years there were also significant advances in the development of new animal models that allows studying the entire cell cycle of human malaria. In this paper, we review the different protocols available to study human Plasmodium species either by using stem cell or alternative animal models.

5.
PLoS One ; 9(11): e112496, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25393299

RESUMEN

The predilection of Plasmodium vivax (P. vivax) for reticulocytes is a major obstacle for its establishment in a long-term culture system, as this requires a continuous supply of large quantities of reticulocytes, representing only 1-2% of circulating red blood cells. We here compared the production of reticulocytes using an established in vitro culture system from three different sources of hematopoietic stem/progenitor cells (HSPC), i.e. umbilical cord blood (UCB), bone marrow (BM) and adult peripheral blood (PB). Compared to CD34+-enriched populations of PB and BM, CD34+-enriched populations of UCB produced the highest amount of reticulocytes that could be invaded by P. vivax. In addition, when CD34+-enriched cells were first expanded, a further extensive increase in reticulocytes was seen for UCB, to a lesser degree BM but not PB. As invasion by P. vivax was significantly better in reticulocytes generated in vitro, we also suggest that P. vivax may have a preference for invading immature reticulocytes, which should be confirmed in future studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Hematopoyéticas/citología , Plasmodium vivax/fisiología , Reticulocitos/citología , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Médula Ósea , Diferenciación Celular , Separación Celular , Células Cultivadas , Sangre Fetal/citología , Citometría de Flujo , Células Madre Hematopoyéticas/parasitología , Humanos , Receptores de Transferrina/metabolismo
6.
Trends Parasitol ; 29(6): 286-94, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23623759

RESUMEN

The development of a continuous Plasmodium vivax blood cycle in vitro was first attempted 100 years ago. Since then, and despite the use of different methods, only short-term cultures have been achieved so far. The available literature has been reviewed in order to provide a critical overview of the currently available knowledge on P. vivax blood cycle culture systems and identify some unexplored ways forward. Results show that data accumulated over the past century remain fragmented and often contradictory, making it difficult to draw conclusions. There is the need for an international consortium on P. vivax culture able to collect, update, and share new evidence, including negative results, and thus better coordinate current efforts towards the establishment of a continuous P. vivax culture.


Asunto(s)
Malaria Vivax/parasitología , Plasmodium vivax/fisiología , Animales , Historia del Siglo XX , Historia del Siglo XXI , Estadios del Ciclo de Vida/fisiología , Malaria Vivax/historia , Plasmodium vivax/crecimiento & desarrollo , Investigación/historia
7.
PLoS One ; 7(7): e40798, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844411

RESUMEN

The development of a system for the continuous culture of Plasmodium vivax in vitro would benefit from the use of reticulocytes derived from differentiated hematopoietic stem cells (HCS). At present, the need to use both fresh reticulocytes and fresh P. vivax isolates represents a major obstacle towards this goal, particularly for laboratories located in non-endemic countries. Here, we describe a new method for the cryopreservation of HSC-derived reticulocytes to be used for both P. falciparum and P. vivax invasion tests. Cryopreserved P. falciparum and P. vivax isolates could invade both fresh and cryopreserved HSC-derived reticulocytes with similar efficiency. This new technique allows the storage of HSC-derived reticulocytes which can be used for later invasion tests and represents an important step towards the establishment of a continuous P. vivax culture.


Asunto(s)
Criopreservación , Células Madre Hematopoyéticas/citología , Plasmodium vivax/aislamiento & purificación , Plasmodium vivax/fisiología , Reticulocitos/citología , Reticulocitos/parasitología , Diferenciación Celular , Proliferación Celular , Femenino , Humanos , Embarazo
8.
PLoS One ; 6(1): e16034, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21249226

RESUMEN

BACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV) and hepatitis C virus (HCV) overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4%) subjects had detectable malaria parasites in blood, 36 (11.3%) were HBV chronic carriers, and 61 (18.9%) were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens, which could help in identifying new therapeutic approaches against malaria.


Asunto(s)
Hepatitis C/epidemiología , Malaria/epidemiología , Plasmodium falciparum/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antimaláricos/uso terapéutico , Hepatitis B/complicaciones , Hepatitis B/epidemiología , Hepatitis C/complicaciones , Humanos , Estudios Longitudinales , Malaria/complicaciones , Malaria/virología , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...