Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 63, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691135

RESUMEN

Bacterial azoreductases are enzymes that catalyze the reduction of ingested or industrial azo dyes. Although azoreductase genes have been well identified and characterized, the regulation of their expression has not been systematically investigated. To determine how different factors affect the expression of azoR, we extracted and analyzed transcriptional data from the Gene Expression Omnibus (GEO) resource, then confirmed computational predictions by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that azoR expression was lower with higher glucose concentration, agitation speed, and incubation temperature, but higher at higher culture densities. Co-expression and clustering analysis indicated ten genes with similar expression patterns to azoR: melA, tpx, yhbW, yciK, fdnG, fpr, nfsA, nfsB, rutF, and chrR (yieF). In parallel, constructing a random transposon library in E. coli K-12 and screening 4320 of its colonies for altered methyl red (MR)-decolorizing activity identified another set of seven genes potentially involved in azoR regulation. Among these genes, arsC, relA, plsY, and trmM were confirmed as potential azoR regulators based on the phenotypic decolorization activity of their transposon mutants, and the expression of arsC and relA was confirmed, by qRT-PCR, to significantly increase in E. coli K-12 in response to different MR concentrations. Finally, the significant decrease in azoR transcription upon transposon insertion in arsC and relA (as compared to its expression in wild-type E. coli) suggests their probable involvement in azoR regulation. In conclusion, combining in silico analysis and random transposon mutagenesis suggested a set of potential regulators of azoR in E. coli.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Nitrorreductasas , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Mutagénesis , Genoma Bacteriano , Biología Computacional , Mutagénesis Insercional
2.
World J Microbiol Biotechnol ; 40(7): 209, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771414

RESUMEN

Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.


Asunto(s)
Enfermedades Transmisibles , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/inmunología , Humanos , Enfermedades Transmisibles/inmunología , Enfermedades Transmisibles/terapia , Animales , Biotecnología/métodos , Ingeniería de Proteínas/métodos
3.
RSC Adv ; 13(29): 19695-19709, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425632

RESUMEN

Antimicrobial resistance has become a concern as a worldwide threat. A novel scaffold of phenylthiazoles was recently evaluated against multidrug-resistant Staphylococci to control the emergence and spread of antimicrobial resistance, showing good results. Several structural modifications are needed based on the structure-activity relationships (SARs) of this new antibiotic class. Previous studies revealed the existence of two key structural features essential for the antibacterial activity, the guanidine head and lipophilic tail. In this study, a new series of twenty-three phenylthiazole derivatives were synthesized utilizing the Suzuki coupling reaction to explore the lipophilic part. The in vitro antibacterial activity was evaluated against a range of clinical isolates. The three most promising compounds, 7d, 15d and 17d, with potent MIC values against MRSA USA300 were selected for further antimicrobial evaluation. The tested compounds exhibited potent results against the tested MSSA, MRSA, and VRSA strains (concentration: 0.5 to 4 µg mL-1). Compound 15d inhibited MRSA USA400 at a concentration of 0.5 µg mL-1 (one-fold more potent than vancomycin) and showed low MIC values against ten clinical isolates, including linezolid-resistant strain MRSA NRS119 and three vancomycin-resistant isolates VRSA 9/10/12. Moreover, compound 15d retained its potent antibacterial activity using the in vivo model by the burden reduction of MRSA USA300 in skin-infected mice. The tested compounds also showed good toxicity profiles and were found to be highly tolerable to Caco-2 cells at concentrations of up to 16 µg mL-1, with 100% of the cells remaining viable.

4.
RSC Med Chem ; 14(2): 367-377, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36846365

RESUMEN

With the continuous and alarming threat of exhausting the current antimicrobial arsenals, efforts are urgently needed to develop new effective ones. In this study, the antibacterial efficacy of a set of structurally related acetylenic-diphenylurea derivatives carrying the aminoguanidine moiety was tested against a panel of multidrug-resistant Gram-positive clinical isolates. Compound 18 was identified with a superior bacteriological profile than the lead compound I. Compound 18 demonstrated an excellent antibacterial profile in vitro: low MIC values, extended post-antibiotic effect, refractory ability to resistance development upon extended repeated exposure, and high tolerability towards mammalian cells. Finally, when assessed in a MRSA skin infection animal model, compound 18 showed considerable healing and less inflammation, decrease in the bacterial loads in skin lesions, and it surpassed fusidic acid in controlling the systemic dissemination of S. aureus. Collectively, compound 18 represents a promising lead anti-MRSA agent that merits further investigation for the development of new anti-staphylococcal therapeutics.

5.
J Basic Microbiol ; 63(5): 481-488, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36670071

RESUMEN

Bacteriophage therapy targeting the increasingly resistant Vibrio cholerae is highly needed. Hence, studying the phenotypic behavior of potential phages under different conditions is a prerequisite to delivering the phage in an active infective form. The objective of this study was to characterize phage VP4 (vB_vcM_Kuja), an environmental vibriophage isolated from River Kuja in Migori County, Kenya in 2015. The phenotypic characteristics of the phage were determined using a one-step growth curve, restriction digestion profile, pH, and temperature stability tests. The results revealed that the phage is stable through a wide range of temperatures (20-50°C) and maintains its plaque-forming ability at pH ranging from 6 to 12. The one-step growth curve showed a latent period falling between 40 and 60 min, while burst size ranged from 23 to 30 plaque-forming units/10 µl at the same host strain. The restriction digestion pattern using EcoRI, SalI, HindIII, and XhoI enzymes showed that HindIII could cut the phage genome. The phage DNA could not be restricted by the other three enzymes. The findings of this study can be used in future studies to determine phage-host interactions.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Kenia , Genoma Viral
6.
Front Immunol ; 14: 1281096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239357

RESUMEN

The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.


Asunto(s)
Proteínas del Sistema Complemento , Parásitos , Animales , Humanos , Activación de Complemento , Bacterias
7.
Eur J Med Chem ; 234: 114204, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35279608

RESUMEN

A set of structurally related diphenylurea derivatives bearing aminoguanidine moiety were synthesized, and their antibacterial activity was assessed against a panel of multi-drug resistant Gram-positive clinical isolates. Two compounds 6 and 24 were identified with better bacteriological profile than the lead compound I. The multi-step resistance development studies indicated that MRSA are less likely to develop resistance toward diphenylurea compounds. Moreover, these compounds demonstrated a prolonged post-antibiotic effect than that of vancomycin. Furthermore, compounds 6 and 24 were able to re-sensitize VRSA to vancomycin, resulting in 8- to more than 32-fold improvement in vancomycin MIC values against clinical VRSA isolates. Finally, when assessed in an in vivo skin infection mouse model, the efficacy of compound 24 was very comparable to that of the commercially available fusidic acid ointment. Additionally, the diphenylurea 24 did not have a pronounced effect on the animal weights along the experiment indicating its safety and tolerability to mice. Taken together, these results indicate that the diphenylurea scaffold merits further investigation as a promising anti-staphylococcal treatment option.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meticilina/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Relación Estructura-Actividad , Vancomicina/farmacología , Staphylococcus aureus Resistente a Vancomicina
8.
Arch Microbiol ; 203(9): 5321-5331, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34379161

RESUMEN

Cholera is a devastating diarrheal disease that accounts for more than 10% of children's lives worldwide, but its treatment is hampered by a rise in antibiotic resistance. One promising alternative to antibiotic therapy is the use of bacteriophages to treat antibiotic-resistant cholera infections, and control Vibrio cholera in clinical cases and in the environment, respectively. Here, we report four novel, closely related environmental myoviruses, VP4, VP6, VP18, and VP24, which we isolated from two environmental toxigenic Vibrio cholerae strains from river Kuja and Usenge beach in Kenya. High-throughput sequencing followed by bioinformatics analysis indicated that the genomes of the four bacteriophages have closely related sequences, with sizes of 148,180 bp, 148,181 bp, 148,179 bp, and 148,179 bp, and a G + C content of 36.4%. The four genomes carry the phoH gene, which is overrepresented in marine cyanophages. The isolated phages displayed a lytic activity against 15 environmental, as well as one clinical, Vibrio cholerae strains. Thus, these novel lytic vibriophages represent potential biocontrol candidates for water decontamination against pathogenic Vibrio cholerae and ought to be considered for future studies of phage therapy.


Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae , Bacteriófagos/genética , Niño , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ríos , Vibrio cholerae/genética
9.
Infect Drug Resist ; 14: 1557-1571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907431

RESUMEN

INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) presents a profound hazard to public health. MRSA colonizing skin, mucous membranes, and the anterior nares without clinical symptoms is termed "colonizing MRSA". Upon manifestation of clinical symptoms, it is termed "infectious MRSA". Here, we characterize and differentiate colonizing and infectious MRSA, and analyze the phenotypic-genotypic and antibiotic susceptibility correlations. METHODOLOGY: Clinical MRSA isolates were recovered from intensive care units (ICUs) of two major Egyptian hospitals and their biofilm formation ability was tested. Antibiograms against 16 antibiotics were determined, in addition to the minimum inhibitory concentrations (MICs) of vancomycin and linezolid. The entire collection was typed by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as multi-locus sequence typing (MLST). Representative resistance and virulence genes were detected by PCR amplification. RESULTS: Forty-nine isolates were confirmed as MRSA, of which 30 isolates were infectious and 19 were colonizing. Versatile resistance patterns were observed in both groups of isolates. We report a higher tendency for biofilm-formation and borderline minimum inhibitory concentrations among infectious isolates. A Positive antibiotic correlation was observed between susceptibility to protein synthesis inhibitors and cell wall inhibitors. Positive correlations were observed between isolation site and rifampicin resistance: nasal samples were enriched in rifampicin-resistant isolates, while urine and blood samples were enriched in susceptible ones. Furthermore, biofilm formation ability was slightly associated with amikacin resistance, and an association between teicoplanin resistance and the presence of the Panton-Valentine leukocidin gene was the only significant phenotype-genotype correlation observed. Finally, ERIC typing and MLST had congruent results. CONCLUSION: Linezolid and vancomycin are still the most convenient choice for MRSA treatment. ERIC PCR and MLST show promising typing combination that could be easily used periodically for tracking the genotypic changes of MRSA, especially within the healthcare facilities. Several correlations were established between groups of antibiotics and the genotypes/phenotypes of the selected isolates.

10.
Biomolecules ; 10(3)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178236

RESUMEN

Staphylococcus aureus is a Gram-positive pathogen that is capable of infecting almost every organ in the human body. Alarmingly, the rapid emergence of methicillin-resistant S.aureus strains (MRSA) jeopardizes the available treatment options. Herein, we propose sustainable, low-cost production of recombinant lysostaphin (rLST), which is a native bacteriocin destroying the staphylococcal cell wall through its endopeptidase activity. We combined the use of E. coli BL21(DE3)/pET15b, factorial design, and simple Ni-NTA affinity chromatography to optimize rLST production. The enzyme yield was up to 50 mg/L culture, surpassing reported systems. Our rLST demonstrated superlative biofilm combating ability by inhibiting staphylococcal biofilms formation and detachment of already formed biofilms, compared to vancomycin and linezolid. Furthermore, we aimed at developing a novel rLST topical formula targeting staphylococcal skin infections. The phase inversion composition (PIC) method fulfilled this aim with its simple preparatory steps and affordable components. LST nano-emulgel (LNEG) was able to extend active LST release up to 8 h and cure skin infections in a murine skin model. We are introducing a rapid, convenient rLST production platform with an outcome of pure, active rLST incorporated into an effective LNEG formula with scaling-up potential to satisfy the needs of both research and therapeutic purposes.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Lisostafina , Staphylococcus aureus Resistente a Meticilina/fisiología , Antibacterianos/química , Antibacterianos/farmacología , Emulsiones , Lisostafina/química , Lisostafina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA