Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 26(2): 302-312, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36468228

RESUMEN

Predator feeding rates (described by their functional response) must saturate at high prey densities. Although thousands of manipulative functional response experiments show feeding rate saturation at high densities under controlled conditions, it remains unclear how saturated feeding rates are at natural prey densities. The general degree of feeding rate saturation has important implications for the processes determining feeding rates and how they respond to changes in prey density. To address this, we linked two databases-one of functional response parameters and one on mass-abundance scaling-through prey mass to calculate a feeding rate saturation index. We find that: (1) feeding rates may commonly be unsaturated and (2) the degree of saturation varies with predator and prey taxonomic identities and body sizes, habitat, interaction dimension and temperature. These results reshape our conceptualisation of predator-prey interactions in nature and suggest new research on the ecological and evolutionary implications of unsaturated feeding rates.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Conducta Predatoria/fisiología , Tamaño Corporal , Temperatura , Evolución Biológica , Cadena Alimentaria
2.
Ecology ; 104(3): e3954, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495236

RESUMEN

Historical resurveys of ecological communities are important for placing the structure of modern ecosystems in context. Rarely, however, are snapshot surveys alone sufficient for providing direct insight into the rates of the ecological processes underlying community functioning, either now or in the past. In this study, I used a statistically reasoned observational approach to estimate the feeding rates of a New Zealand intertidal predator, Haustrum haustorium, using diet surveys performed at several sites by Robert Paine in 1968-1969 and by me in 2004. Comparisons between time periods reveal a remarkable consistency in the predator's prey-specific feeding rates, which contrasts with the changes I observed in prey abundances, the predator's body-size distribution, and the prey's proportional contributions to the predator's apparent diet. Although these and additional changes in the predator's per-capita attack rates seem to show adaptive changes in its prey preferences, they do not. Rather, feeding-rate stability is an inherently statistical consequence of the predator's high among-prey variation in handling times which determine the length of time that feeding events will remain detectable to observers performing diet surveys. Though understudied, similarly high among-prey variation in handling (or digestion) times is evident in many predator species throughout the animal kingdom. The resultant disconnect between a predator's apparent diet and its actual feeding rates suggests that much of the temporal, biogeographic, and seemingly context-dependent variation that is often perceived in community structure, predator diets, and food-web topology may be of less functional consequence than assumed. Qualitative changes in ecological pattern need not represent qualitative changes in ecological process.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Modelos Biológicos , Cadena Alimentaria , Tamaño Corporal
3.
Vector Borne Zoonotic Dis ; 22(8): 443-448, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35877087

RESUMEN

In the past few decades, reported human cases of Colorado tick fever in the western United States have decreased dramatically. The goal of this study was to conduct surveillance for Colorado tick fever virus (CTFV) in Dermacentor ticks in recreational sites in Colorado, Wyoming, and California to determine whether the virus is still present in Dermacentor ticks from these states. Surveillance focused on regions where surveys had been conducted in the 1950s, 1960s, and 1970s. Adult Rocky Mountain wood ticks (Dermacentor andersoni), Pacific Coast ticks (Dermacentor occidentalis), and winter ticks (Dermacentor albipictus) were tested by PCR. A subset of PCR-positive D. andersoni ticks (n = 7) were cultured in Vero cells. CTFV-positive Rocky Mountain wood ticks were found in all states: Colorado (58% prevalence), Wyoming (21%), and California (4%). Although no winter ticks tested positive, Pacific Coast ticks tested positive in one county (Siskiyou County, 15% prevalence) and were positive only in a location that also maintained Rocky Mountain wood ticks and golden mantled ground squirrels, a known CTFV host. In summary, CTFV is prevalent in D. andersoni and D. occidentalis in regions where they are sympatric in California and in D. andersoni in Colorado and Wyoming. Although the number of human CTFV cases has declined dramatically, this decrease in reported disease does not appear to be due to the disappearance or even the decline in prevalence of this virus in ticks in historically endemic regions of the country.


Asunto(s)
Fiebre por Garrapatas del Colorado , Virus de la Fiebre por Garrapatas del Colorado , Dermacentor , Virus , Animales , Chlorocebus aethiops , Fiebre por Garrapatas del Colorado/epidemiología , Fiebre por Garrapatas del Colorado/veterinaria , Humanos , Células Vero
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181602

RESUMEN

The factors that determine why ecosystems exhibit abrupt shifts in state are of paramount importance for management, conservation, and restoration efforts. Kelp forests are emblematic of such abruptly shifting ecosystems, transitioning from kelp-dominated to urchin-dominated states around the world with increasing frequency, yet the underlying processes and mechanisms that control their dynamics remain unclear. Here, we analyze four decades of data from biannual monitoring around San Nicolas Island, CA, to show that substrate complexity controls both the number of possible (alternative) states and the velocity with which shifts between states occur. The superposition of community dynamics with reconstructions of system stability landscapes reveals that shifts between alternative states at low-complexity sites reflect abrupt, high-velocity events initiated by pulse perturbations that rapidly propel species across dynamically unstable state-space. In contrast, high-complexity sites exhibit a single state of resilient kelp-urchin coexistence. Our analyses suggest that substrate complexity influences both top-down and bottom-up regulatory processes in kelp forests, highlight its influence on kelp-forest stability at both large (island-wide) and small (<10 m) spatial scales, and could be valuable for holistic kelp-forest management.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Macrocystis/crecimiento & desarrollo , Animales , Organismos Acuáticos , Cambio Climático , Cadena Alimentaria , Kelp , Modelos Teóricos
6.
Int J Pharm ; 607: 121008, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34391851

RESUMEN

This paper presents new machine vision-based methods for indirect real-time quantification of ultralow drug content during continuous twin-screw wet granulation and tableting. Granulation was performed with a solution containing carvedilol (CAR) as API in the ultralow dose range (0.05w/w% in the granule) and the addition of riboflavin (RI) as a coloured tracer. An in-line calibration in the range of 0.047-0.058 w/w% was prepared for the measurement of CAR concentration using colour analysis (CA) and particle size analysis (PSA), and the validation with HPLC resulted in respective relative errors of 2.62% and 2.30% showing great accuracy. To improve the technique, a second in-line calibration was conducted in a broader CAR concentration range of 0.039-0.063 w/w% utilizing only half the amount of RI (0.045 w/w%), while doubling the output of the granulation line to 2 kg/h, producing a relative error of 4.51% and 4.29%, respectively. Finally, it was shown that the CA technique can also be carried on to monitor the CAR content of tablets in the 42-62 µg dose range with a relative error of 5.20%. Machine vision was proven to be a potent indirect method for the in-line, determination and monitoring of ultralow API content during continuous manufacturing.


Asunto(s)
Composición de Medicamentos , Tecnología Farmacéutica , Calibración , Tamaño de la Partícula , Comprimidos
7.
Nat Ecol Evol ; 5(10): 1435-1440, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34385617

RESUMEN

Collective behaviour is common in bacteria, plants and animals, and therefore occurs across ecosystems, from biofilms to cities. With collective behaviour, social interactions among individuals propagate to affect the behaviour of groups, whereas group-level responses in turn affect individual behaviour. These cross-scale feedback loops between individuals, populations and their environments can provide fitness benefits, such as the efficient exploitation of uncertain resources, as well as costs, such as increased resource competition. Although the social mechanics of collective behaviour are increasingly well-studied, its role in ecosystems remains poorly understood. Here we introduce collective movement into a model of consumer-resource dynamics to demonstrate that collective behaviour can attenuate consumer-resource cycles and promote species coexistence. We focus on collective movement as a particularly well-understood example of collective behaviour. Adding collective movement to canonical unstable ecological scenarios causes emergent social-ecological feedback, which mitigates conditions that would otherwise result in extinction. Collective behaviour could play a key part in the maintenance of biodiversity.


Asunto(s)
Ecosistema , Movimiento , Animales , Biodiversidad , Humanos
8.
J Med Entomol ; 58(4): 1880-1890, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33860326

RESUMEN

In California, the western blacklegged tick, Ixodes pacificus Cooley and Kohls, is the principal vector of the Borrelia burgdorferi sensu lato (sl) complex (Spirochaetales: Spirochaetaceae, Johnson et al.), which includes the causative agent of Lyme disease (B. burgdorferi sensu stricto). Ixodes pacificus nymphs were sampled from 2015 to 2017 at one Sierra Nevada foothill site to evaluate our efficiency in collecting this life stage, characterize nymphal seasonality, and identify environmental factors affecting their abundance and infection with B. burgdorferi sl. To assess sampling success, we compared the density and prevalence of I. pacificus nymphs flagged from four questing substrates (logs, rocks, tree trunks, leaf litter). Habitat characteristics (e.g., canopy cover, tree species) were recorded for each sample, and temperature and relative humidity were measured hourly at one location. Generalized linear mixed models were used to assess environmental factors associated with I. pacificus abundance and B. burgdorferi sl infection. In total, 2,033 substrates were sampled, resulting in the collection of 742 I. pacificus nymphs. Seasonal abundance of nymphs was bimodal with peak activity occurring from late March through April and a secondary peak in June. Substrate type, collection year, month, and canopy cover were all significant predictors of nymphal density and prevalence. Logs, rocks, and tree trunks had significantly greater nymphal densities and prevalences than leaf litter. Cumulative annual vapor pressure deficit was the only significant climatic predictor of overall nymphal I. pacificus density and prevalence. No associations were observed between the presence of B. burgdorferi sl in nymphs and environmental variables.


Asunto(s)
Ixodes , Animales , Vectores Arácnidos/microbiología , Vectores Arácnidos/fisiología , Borrelia burgdorferi , California , Ecosistema , Ixodes/microbiología , Ixodes/fisiología , Enfermedad de Lyme/epidemiología , Ninfa/microbiología , Ninfa/fisiología , Dinámica Poblacional , Estaciones del Año , Temperatura
9.
Int J Pharm ; 597: 120338, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33545285

RESUMEN

In this work spectroscopic measurements, process data and Critical Material Attributes (CMAs) are used to predict the in vitro dissolution profile of sustained-release tablets with three machine learning methods, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Ensemble of Regression Trees (ERT). Beside the effect of matrix polymer content and compression force, the influence of active pharmaceutical ingredient (API) and matrix polymer particle size distribution (PSD) on the drug release rate of sustained tablets is studied. The matrix polymer PSD was found to be a significant factor, thus this factor was included in the dissolution prediction experiments. In order to evaluate the importance of the inclusion of PSD data, models without PSD data were also prepared and the results were compared. In the developed models, the API and hydroxypropyl-methylcellulose (HPMC) content is predicted from near-infrared (NIR) spectra, the compression force is measured by the tablet press and HPMC particle size is measured off-line. The predictions of ANN, SVM and ERT were compared to the measured dissolution profiles of the validation tablets, ANN yielded the most accurate results. In the presented work, data provided by Process Analytical Technology (PAT) sensors is combined with CMAs for the first time to realize the Real-Time Release Testing (RTRT) of tablet dissolution.


Asunto(s)
Algoritmos , Espectroscopía Infrarroja Corta , Preparaciones de Acción Retardada , Derivados de la Hipromelosa , Aprendizaje Automático , Metilcelulosa , Tamaño de la Partícula , Solubilidad , Comprimidos
10.
Ecol Lett ; 24(3): 520-532, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33404158

RESUMEN

Functional responses relate a consumer's feeding rates to variation in its abiotic and biotic environment, providing insight into consumer behaviour and fitness, and underpinning population and food-web dynamics. Despite their broad relevance and long-standing history, we show here that the types of density dependence found in classic resource- and consumer-dependent functional-response models equate to strong and often untenable assumptions about the independence of processes underlying feeding rates. We first demonstrate mathematically how to quantify non-independence between feeding and consumer interference and between feeding on multiple resources. We then analyse two large collections of functional-response data sets to show that non-independence is pervasive and borne out in previously hidden forms of density dependence. Our results provide a new lens through which to view variation in consumer feeding rates and disentangle the biological underpinnings of species interactions in multi-species contexts.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos
11.
J Anim Ecol ; 90(3): 766-775, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33368227

RESUMEN

Although parasites are increasingly recognized for their ecosystem roles, it is often assumed that free-living organisms dominate animal biomass in most ecosystems and therefore provide the primary pathways for energy transfer. To examine the contributions of parasites to ecosystem energetics in freshwater streams, we quantified the standing biomass of trematodes and free-living organisms at nine sites in three streams in western Oregon, USA. We then compared the rates of biomass flow from snails Juga plicifera into trematode parasites relative to aquatic vertebrate predators (sculpin, cutthroat trout and Pacific giant salamanders). The trematode parasite community had the fifth highest dry biomass density among stream organisms (0.40 g/m2 ) and exceeded the combined biomass of aquatic insects. Only host snails (3.88 g/m2 ), sculpin (1.11 g/m2 ), trout (0.73 g/m2 ) and crayfish (0.43 g/m2 ) had a greater biomass. The parasite 'extended phenotype', consisting of trematode plus castrated host biomass, exceeded the individual biomass of every taxonomic group other than snails. The substantial parasite biomass stemmed from the high snail density and infection prevalence, and the large proportional mass of infected hosts that consisted of trematode tissue (M = 31% per snail). Estimates of yearly biomass transfer from snails into trematodes were slightly higher than the combined estimate of snail biomass transfer into the three vertebrate predators. Pacific giant salamanders accounted for 90% of the snail biomass consumed by predators. These results demonstrate that trematode parasites play underappreciated roles in the ecosystem energetics of some freshwater streams.


Asunto(s)
Parásitos , Trematodos , Infecciones por Trematodos , Animales , Biomasa , Ecosistema , Cadena Alimentaria , Interacciones Huésped-Parásitos , Insectos , Oregon
12.
Ecol Lett ; 24(3): 580-593, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33381898

RESUMEN

Functional responses are a cornerstone to our understanding of consumer-resource interactions, so how to best describe them using models has been actively debated. Here we focus on the consumer dependence of functional responses to evidence systematic bias in the statistical comparison of functional-response models and the estimation of their parameters. Both forms of bias are universal to nonlinear models (irrespective of consumer dependence) and are rooted in a lack of sufficient replication. Using a large compilation of published datasets, we show that - due to the prevalence of low sample size studies - neither the overall frequency by which alternative models achieve top rank nor the frequency distribution of parameter point estimates should be treated as providing insight into the general form or central tendency of consumer interference. We call for renewed clarity in the varied purposes that motivate the study of functional responses, purposes that can compete with each other in dictating the design, analysis and interpretation of functional-response experiments.


Asunto(s)
Modelos Biológicos , Sesgo
13.
Emerg Infect Dis ; 26(3): 560-567, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32091360

RESUMEN

In 2012, a total of 9 cases of hantavirus infection occurred in overnight visitors to Yosemite Valley, Yosemite National Park, California, USA. In the 6 years after the initial outbreak investigation, the California Department of Public Health conducted 11 rodent trapping events in developed areas of Yosemite Valley and 6 in Tuolumne Meadows to monitor the relative abundance of deer mice (Peromyscus maniculatus) and seroprevalence of Sin Nombre orthohantavirus, the causative agent of hantavirus pulmonary syndrome. Deer mouse trap success in Yosemite Valley remained lower than that observed during the 2012 outbreak investigation. Seroprevalence of Sin Nombre orthohantavirus in deer mice during 2013-2018 was also lower than during the outbreak, but the difference was not statistically significant (p = 0.02). The decreased relative abundance of Peromyscus spp. mice in developed areas of Yosemite Valley after the outbreak is probably associated with increased rodent exclusion efforts and decreased peridomestic habitat.


Asunto(s)
Infecciones por Hantavirus/epidemiología , Orthohantavirus/aislamiento & purificación , Animales , California/epidemiología , Reservorios de Enfermedades , Infecciones por Hantavirus/virología , Humanos , Ratones/virología , Parques Recreativos , Virus Sin Nombre/aislamiento & purificación
14.
Microorganisms ; 8(1)2019 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-31877879

RESUMEN

Certain G-rich DNA repeats can form quadruplex in bacterial chromatin that can present blocks to DNA replication and, if not properly resolved, may lead to mutations. To understand the participation of quadruplex DNA in genomic instability in Escherichia coli (E. coli), mutation rates were measured for quadruplex-forming DNA repeats, including (G3T)4, (G3T)8, and a RET oncogene sequence, cloned as the template or nontemplate strand. We evidence that these alternative structures strongly influence mutagenesis rates. Precisely, our results suggest that G-quadruplexes form in E. coli cells, especially during transcription when the G-rich strand can be displaced by R-loop formation. Structure formation may then facilitate replication misalignment, presumably associated with replication fork blockage, promoting genomic instability. Furthermore, our results also evidence that the nucleoid-associated protein Hfq is involved in the genetic instability associated with these sequences. Hfq binds and stabilizes G-quadruplex structure in vitro and likely in cells. Collectively, our results thus implicate quadruplexes structures and Hfq nucleoid protein in the potential for genetic change that may drive evolution or alterations of bacterial gene expression.

15.
Ecology ; 100(10): e02816, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31287561

RESUMEN

Species interactions in food webs are usually recognized as dynamic, varying across species, space, and time because of biotic and abiotic drivers. Yet food webs also show emergent properties that appear consistent, such as a skewed frequency distribution of interaction strengths (many weak, few strong). Reconciling these two properties requires an understanding of the variation in pairwise interaction strengths and its underlying mechanisms. We estimated stream sculpin feeding rates in three seasons at nine sites in Oregon to examine variation in trophic interaction strengths both across and within predator-prey pairs. Predator and prey densities, prey body mass, and abiotic factors were considered as putative drivers of within-pair variation over space and time. We hypothesized that consistently skewed interaction strength distributions could result if individual interaction strengths show relatively little variation, or alternatively, if interaction strengths vary but shift in ways that conserve their overall frequency distribution. Feeding rate distributions remained consistently and positively skewed across all sites and seasons. The mean coefficient of variation in feeding rates within each of 25 focal species pairs across surveys was less than half the mean coefficient of variation seen across species pairs within a survey. The rank order of feeding rates also remained conserved across streams, seasons and individual surveys. On average, feeding rates on each prey taxon nonetheless varied by a hundredfold, with some feeding rates showing more variation in space and others in time. In general, feeding rates increased with prey density and decreased with high stream flows and low water temperatures, although for nearly half of all species pairs, factors other than prey density explained the most variation. Our findings show that although individual interaction strengths exhibit considerable variation in space and time, they can nonetheless remain relatively consistent, and thus predictable, compared to the even larger variation that occurs across species pairs. These results highlight how the ecological scale of inference can strongly shape conclusions about interaction strength consistency and help reconcile how the skewed nature of interaction strength distributions can persist in highly dynamic food webs.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Oregon , Ríos , Estaciones del Año
16.
Ecology ; 99(7): 1591-1601, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29738085

RESUMEN

Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Oregon , Fenotipo , Ríos
17.
Ecohealth ; 15(3): 566-576, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29700709

RESUMEN

It has long been theorized that deer mice (Peromyscus maniculatus) are a primary reservoir of Yersinia pestis in California. However, recent research from other parts of the western USA has implicated deer mice as spillover hosts during epizootic plague transmission. This retrospective study analyzed deer mouse data collected for plague surveillance by public health agencies in California from 1971 to 2016 to help elucidate the role of deer mice in plague transmission. The fleas most commonly found on deer mice were poor vectors of Y. pestis and occurred in insufficient numbers to maintain transmission of the pathogen, while fleas whose natural hosts are deer mice were rarely observed and even more rarely found infected with Y. pestis on other rodent hosts. Seroprevalence of Y. pestis antibodies in deer mice was significantly lower than that of several chipmunk and squirrel species. These analyses suggest that it is unlikely that deer mice play an important role in maintaining plague transmission in California. While they may not be primary reservoirs, results supported the premise that deer mice are occasionally exposed to and infected by Y. pestis and instead may be spillover hosts.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Brotes de Enfermedades/veterinaria , Reservorios de Enfermedades/microbiología , Peromyscus/microbiología , Peste/microbiología , Peste/transmisión , Yersinia pestis/aislamiento & purificación , Animales , California/epidemiología , Ratones , Peste/epidemiología , Peste/veterinaria , Estudios Retrospectivos , Enfermedades de los Roedores/epidemiología , Estudios Seroepidemiológicos , Zoonosis/microbiología , Zoonosis/transmisión
18.
J Mol Graph Model ; 80: 138-146, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29346080

RESUMEN

A new submolecular quantitative structure activity relationship (QSAR) descriptor was applied toward elucidating the anti-malarial pharmacophore of tryptanthrins, a class of compounds known for their anti-parasitic activities. The new descriptor is based on experimental and computational measurements of the tunneling barriers of individual lobes of the molecular orbitals. Lobe-by-lobe QSAR correlation plots revealed a single lobe of the LUMO to be strongly associated with tryptanthrin's anti-malarial activity. The correlation also showed a threshold behavior wherein barriers below a particular value show low IC50 values. Above the threshold, the correlation of IC50 vs the logarithm of the barrier is linear with R2 = 0.999. This barrier threshold may be applied as a design criterion for future tryptanthrin-based anti-malarial lead optimization. The new descriptor may be broadly applicable toward other molecular systems of interest, such as catalysts, pesticides, and herbicides. The authors have named the new descriptor: submolecular tunneling analysis of barriers (STAB).


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Quinazolinas/química , Quinazolinas/farmacología , Diseño de Fármacos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular
19.
J Math Biol ; 76(4): 877-909, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28735343

RESUMEN

We consider the goal of predicting how complex networks respond to chronic (press) perturbations when characterizations of their network topology and interaction strengths are associated with uncertainty. Our primary result is the derivation of exact formulas for the expected number and probability of qualitatively incorrect predictions about a system's responses under uncertainties drawn form arbitrary distributions of error. Additional indices provide new tools for identifying which links in a network are most qualitatively and quantitatively sensitive to error, and for determining the volume of errors within which predictions will remain qualitatively determinate (i.e. sign insensitive). Together with recent advances in the empirical characterization of uncertainty in networks, these tools bridge a way towards probabilistic predictions of network dynamics.


Asunto(s)
Modelos Biológicos , Biología de Sistemas/estadística & datos numéricos , Animales , Biología Computacional , Ecosistema , Cadena Alimentaria , Humanos , Conceptos Matemáticos , Probabilidad , Incertidumbre
20.
Nat Ecol Evol ; 1(4): 68, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28812672

RESUMEN

One of the twenty-first century's greatest environmental challenges is to recover and restore species, habitats and ecosystems. The decision about how to initiate restoration is best-informed by an understanding of the linkages between ecosystem components and, given these linkages, an appreciation of the consequences of choosing to recover one ecosystem component before another. However, it remains difficult to predict how the sequence of species' recoveries within food webs influences the speed and trajectory of restoration, and what that means for human well-being. Here, we develop theory to consider the ecological and social implications of synchronous versus sequential (species-by-species) recovery in the context of exploited food webs. A dynamical systems model demonstrates that synchronous recovery of predators and prey is almost always more efficient than sequential recovery. Compared with sequential recovery, synchronous recovery can be twice as fast and produce transient fluctuations of much lower amplitude. A predator-first strategy is particularly slow because it counterproductively suppresses prey recovery. An analysis of real-world predator-prey recoveries shows that synchronous and sequential recoveries are similarly common, suggesting that current practices are not ideal. We highlight policy tools that can facilitate swift and steady recovery of ecosystem structure, function and associated services.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...