Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793385

RESUMEN

This study investigates how varying cell size affects the mechanical behaviour of photopolymer Triply Periodic Minimal Surfaces (TPMS) under different deformation rates. Diamond, Gyroid, and Primitive TPMS structures with spatially graded cell sizes were tested. Quasi-static experiments measured boundary forces, representing material behaviour, inertia, and deformation mechanisms. Separate studies explored the base material's behaviour and its response to strain rate, revealing a strength increase with rising strain rate. Ten compression tests identified a critical strain rate of 0.7 s-1 for "Grey Pro" material, indicating a shift in failure susceptibility. X-ray tomography, camera recording, and image correlation techniques observed cell connectivity and non-uniform deformation in TPMS structures. Regions exceeding the critical rate fractured earlier. In Primitive structures, stiffness differences caused collapse after densification of smaller cells at lower rates. The study found increasing collapse initiation stress, plateau stress, densification strain, and specific energy absorption with higher deformation rates below the critical rate for all TPMS structures. However, cell-size graded Primitive structures showed a significant reduction in plateau and specific energy absorption at a 500 mm/min rate.

2.
Mater Today Bio ; 22: 100770, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37636985

RESUMEN

Polysaccharide hydrogels and metal alloy nanoparticles have already found use in a range of biomedical applications. Nickel-copper nanoparticles (NiCu NPs) are particularly promising due to their tunable properties, such as ferromagnetism, biocompatibility, and antimicrobial activity. At the same time, polysaccharide hydrogels made of polymer mixtures such as alginate and methylcellulose with incorporated metal alloy nanoparticles are reported in the scientific literature. In view of this, in this work, NiCu NPs are combined with polysaccharide hydrogels and 3D printed to construct geometrically customizable dressings with tailorable properties for melanoma treatment. This novel combination exploits the intrinsic magnetic properties of NiCu NPs and the same time builds on their less known properties to improve the mechanic stability of 3D printed materials, both contributing to a previously not reported application as potent cytotoxic dressing against melanoma cells. The dressings were evaluated in terms of their physico-chemical characteristics, and their potential application, namely melanoma cell cytotoxicity. While all dressings exhibited similar degradation profiles regardless of composition, the addition of NiCu NPs had an effect on the hydrophilicity, swelling rates, and topographical properties of the dressings. Compression results showed that the presence of NPs increased the stiffness of the dressings, while the ultimate tensile strength was highest at 0.31 MPa for the dressings with 0.5 wt% NPs. We show that although the base formulation of the dressings is biocompatible with skin-derived cells, dressings loaded with NPs exhibit promising antimelanoma activity. Extracts obtained from dressings containing 0.5 wt% NPs reduced melanoma cell viability to 61% ± 11% and 40% ± 2% after 24 h and 72 h of soaking, respectively. Furthermore, extracts of dressings with 1 wt% NPs reduced melanoma cell viability to less than 15% within the first 24 h. By adjusting the NP content, the mechanical properties, surface roughness, and wettability can be tuned so that the dressings can be functionally customized. In addition, by using 3D printing as a fabrication process, the shape and composition of the dressings can be tailored to the patient's needs. The dressings also remained intact after soaking in simulated physiological solution for 14 days, indicating their suitability for long-term topical application.

3.
Sci Rep ; 13(1): 8158, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208540

RESUMEN

The auxetic cellular structures are one of the most promising metamaterials for vibration damping and crash absorption applications. Therefore, their use in the bicycle handlebar grip was studied in this work. A preliminary computational design study was performed using various auxetic and non-auxetic geometries under four load cases, which can typically appear. The most representative geometries were then selected and fabricated using additive manufacturing. These geometries were then experimentally tested to validate the discrete and homogenised computational models. The homogenised computational model was then used to analyse the biomechanical behaviour of the handlebar grip. It was observed that handle grip made from auxetic cellular metamaterials reduce the high contact pressures, provide similar stability and hereby improve the handlebar ergonomics.

4.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35160560

RESUMEN

A conventional compound fabric was used to develop a modern, multifunctional material with an auxetic behaviour and a tailored open area for particle filtration. Such material was produced using traditional textile technology and laser cutting, to induce a rotating squares unit geometry. The behaviour was investigated of three different rotating unit cell sizes. The laser slit thickness and the length of the hinges were equal for all three-unit cells. The tensile properties, Poisson's ratio and auxetic behaviour of the tested samples were investigated, especially the influence of longitudinal displacement on the fabric's open area and the filtered particle sizes (average and maximum). Results show that the developed compound fabric possesses an average negative Poisson's ratio of up to -1, depending on the applied auxetic geometry. The larger rotating cell size samples offer a higher average negative Poisson's ratio and a higher breaking strength due to the induced slits. The findings highlight the usefulness of patterned cuts in conventional textile materials to develop advanced auxetic textile materials with tailored geometrical and mechanical properties.

5.
Materials (Basel) ; 15(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009529

RESUMEN

Auxetic structures can be used as protective sacrificial solutions for impact protection with lightweight and excellent energy-dissipation characteristics. A recently published and patented shock-absorbing system, namely, Uniaxial Graded Auxetic Damper (UGAD), proved its efficiency through comprehensive analytical and computational analyses. However, the authors highlighted the necessity for experimental testing of this new damper. Hence, this paper aimed to fabricate the UGAD using a cost-effective method and determine its load-deformation properties and energy-absorption potential experimentally and computationally. The geometry of the UGAD, fabrication technique, experimental setup, and computational model are presented. A series of dog-bone samples were tested to determine the exact properties of aluminium alloy (AW-5754, T-111). A simplified (elastic, plastic with strain hardening) material model was proposed and validated for use in future computational simulations. Results showed that deformation pattern, progressive collapse, and force-displacement relationships of the manufactured UGAD are in excellent agreement with the computational predictions, thus validating the proposed computational and material models.

6.
Materials (Basel) ; 12(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818012

RESUMEN

Closed-cell aluminium foams were fabricated and characterised at different strain rates. Quasi-static and high strain rate experimental compression testing was performed using a universal servo-hydraulic testing machine and powder gun. The experimental results show a large influence of strain rate hardening on mechanical properties, which contributes to significant quasi-linear enhancement of energy absorption capabilities at high strain rates. The results of experimental testing were further used for the determination of critical deformation velocities and validation of the proposed computational model. A simple computational model with homogenised crushable foam material model shows good correlation between the experimental and computational results at analysed strain rates. The computational model offers efficient (simple, fast and accurate) analysis of high strain rate deformation behaviour of a closed-cell aluminium foam at different loading velocities.

7.
Polymers (Basel) ; 11(6)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212820

RESUMEN

This paper reports the auxetic behavior of modified conventional non-woven fabric. The auxetic behavior of fabric was achieved by forming rotating square unit geometry with a highly ordered pattern of slits by laser cutting. Two commercial needle-punched non-woven fabric used as lining and the reinforcement fabric for the footwear industry were investigated. The influence of two rotating square unit sizes was analyzed for each fabric. The original and modified fabric samples were subjected to quasi-static tensile load by using the Tinius Olsen testing machine to observe the in-plane mechanical properties and deformation behavior of tested samples. The tests were recorded with a full high-definition (HD) digital camera and the video recognition technique was applied to determine the Poisson's ratio evolution during testing. The results show that the modified samples exhibit a much lower breaking force due to induced slits, which in turn limits the application of such modified fabric to low tensile loads. The samples with smaller rotating cell sizes exhibit the highest negative Poisson's ratio during tensile loading through the entire longitudinal strain range until rupture. Non-woven fabric with equal distribution and orientation of fibers in both directions offer better auxetic response with a smaller out-of-plane rotation of rotating unit cells. The out-of-plane rotation of unit cells in non-homogenous samples is higher in machine direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...