Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233552

RESUMEN

The thermal-oxidative degradation of aqueous solutions of carbonized monoethanolamine (MEA, 30% wt., 0.25 mol MEA/mol CO2) was studied for 336 h at 120 °C. Based on the change in the color of the solution and the formation of a precipitate, the occurrence of thermal-oxidative degradation of the MEA solution with the formation of destruction products, including insoluble ones, was confirmed. The electrokinetic activity of the resulting degradation products, including insoluble ones, was studied during the electrodialysis purification of an aged MEA solution. To understand the influence of degradation products on the ion-exchange membrane properties, a package of samples of MK-40 and MA-41 ion-exchange membranes was exposed to a degraded MEA solution for 6 months. A comparison of the efficiency of the electrodialysis treatment of a model absorption solution of MEA before and after long-time contact with degraded MEA showed that the depth of desalination was reduced by 34%, while the magnitude of the current in the ED apparatus was reduced by 25%. For the first time, the regeneration of ion-exchange membranes from MEA degradation products was carried out, which made it possible to restore the depth of desalting in the ED process by 90%.

2.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615597

RESUMEN

In this work, we studied aqueous solutions of monoethanolamine (MEA), which are widely used to remove CO2 from flue and oil gases. This study combined experimental and theoretical methods of vibrational spectroscopy, using high-temperature infrared spectroscopy, quantum-chemical calculations of theoretical vibrational spectra, and structural electronic and energy characteristics of model structures. MEA has a propensity to form associations between various compositions and structures with water molecules, as well as those composed solely of water molecules. The structural and energy characteristics of such associates were analyzed in terms of their ability to interact and retain carbon dioxide. The influence of elevated temperatures and concentration of aqueous MEA solution on change in the structure of associates has also been investigated. An analysis of theoretical and experimental vibrational spectra allowed us to examine the IR spectra of MEA solutions, and identify the bands responsible for the formation of associates that would sorb CO2 well, but would delay its desorption from the solution.

3.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267801

RESUMEN

This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...