Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223388

RESUMEN

Trafficking of G protein-coupled receptors (GPCRs) through the endosomal-lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR-APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal-lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.

2.
Nat Chem Biol ; 20(9): 1133-1143, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38528119

RESUMEN

The µ-opioid receptor (µOR) represents an important target of therapeutic and abused drugs. So far, most understanding of µOR activity has focused on a subset of known signal transducers and regulatory molecules. Yet µOR signaling is coordinated by additional proteins in the interaction network of the activated receptor, which have largely remained invisible given the lack of technologies to interrogate these networks systematically. Here we describe a proteomics and computational approach to map the proximal proteome of the activated µOR and to extract subcellular location, trafficking and functional partners of G-protein-coupled receptor (GPCR) activity. We demonstrate that distinct opioid agonists exert differences in the µOR proximal proteome mediated by endocytosis and endosomal sorting. Moreover, we identify two new µOR network components, EYA4 and KCTD12, which are recruited on the basis of receptor-triggered G-protein activation and might form a previously unrecognized buffering system for G-protein activity broadly modulating cellular GPCR signaling.


Asunto(s)
Proteoma , Proteómica , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Proteoma/metabolismo , Humanos , Proteómica/métodos , Transducción de Señal , Células HEK293 , Endocitosis , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...