Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(27): 7084-7094, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38953521

RESUMEN

Crystallization pathways are essential to various industrial, geological, and biological processes. In nonclassical nucleation theory, prenucleation clusters (PNCs) form, aggregate, and crystallize to produce higher order assemblies. Microscopy and X-ray techniques have limited utility for PNC analysis due to the small size (0.5-3 nm) and time stability constraints. We present a new approach for analyzing PNC formation based on 31P nuclear magnetic resonance (NMR) spin counting of vitrified molecular assemblies. The use of glassing agents ensures that vitrification generates amorphous aqueous samples and offers conditions for performing dynamic nuclear polarization (DNP)-amplified NMR spectroscopy. We demonstrate that molecular adenosine triphosphate along with crystalline, amorphous, and clustered calcium phosphate materials formed via a nonclassical growth pathway can be differentiated from one another by the number of dipolar coupled 31P spins. We also present an innovative approach for examining spin counting data, demonstrating that a knowledge-based fitting of integer multiples of cosine wave functions, instead of the traditional Fourier transform, provides a more physically meaningful retrieval of the existing frequencies. This is the first report of multiquantum spin counting of assemblies formed in solution as captured under vitrified DNP conditions, which can be useful for future analysis of PNCs and other aqueous molecular clusters.

2.
NMR Biomed ; 37(2): e5057, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37853675

RESUMEN

Phosphate is an essential anion in the human body, comprising approximately 1% of the total body weight, and playing a vital role in metabolism, cell membranes, and bone formation. We have recently provided spectroscopic, microscopic, and computational evidence indicating that phosphates can aggregate much more readily in solution than previously thought. This prior work provided indirect evidence through the observation of unusual 31 P NMR relaxation and line-broadening effects with increasing temperature. Here, we show that, under conditions of slow exchange and selective RF saturation, additional features become visible in chemical exchange saturation transfer (CEST) experiments, which appear to be related to the previously reported phosphate clustering. In particular, CEST shows pronounced dips several ppm upfield of the main phosphate resonance at low temperatures, while direct 31 P spectroscopy does not produce any signals in that range. We study the pH dependence of these new spectroscopic features and present exchange and spectroscopic parameters based on fitting the CEST data. These findings could be of importance in the investigation of phosphate dynamics, especially in the biological milieu.


Asunto(s)
Algoritmos , Fosfatos , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Concentración de Iones de Hidrógeno
3.
Proc Natl Acad Sci U S A ; 120(1): e2206765120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36580589

RESUMEN

Phosphates and polyphosphates play ubiquitous roles in biology as integral structural components of cell membranes and bone, or as vehicles of energy storage via adenosine triphosphate and phosphocreatine. The solution phase space of phosphate species appears more complex than previously known. We present nuclear magnetic resonance (NMR) and cryogenic transmission electron microscopy (cryo-TEM) experiments that suggest phosphate species including orthophosphates, pyrophosphates, and adenosine phosphates associate into dynamic assemblies in dilute solutions that are spectroscopically "dark." Cryo-TEM provides visual evidence of the formation of spherical assemblies tens of nanometers in size, while NMR indicates that a majority population of phosphates remain as unassociated ions in exchange with spectroscopically invisible assemblies. The formation of these assemblies is reversibly and entropically driven by the partial dehydration of phosphate groups, as verified by diffusion-ordered spectroscopy (DOSY), indicating a thermodynamic state of assembly held together by multivalent interactions between the phosphates. Molecular dynamics simulations further corroborate that orthophosphates readily cluster in aqueous solutions. This study presents the surprising discovery that phosphate-containing molecules, ubiquitously present in the biological milieu, can readily form dynamic assemblies under a wide range of commonly used solution conditions, highlighting a hitherto unreported property of phosphate's native state in biological solutions.


Asunto(s)
Fosfatos , Polifosfatos , Fosfatos/metabolismo , Polifosfatos/metabolismo , Agua/química , Espectroscopía de Resonancia Magnética/métodos , Microscopía Electrónica de Transmisión , Adenosina Trifosfato , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...