Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 9(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34835170

RESUMEN

The COVID-19 pandemic has profoundly affected almost all facets of peoples' lives, various economic areas and regions of the world. In such a situation implementation of a vaccination can be viewed as essential but its success will be dependent on availability and transparency in the distribution process that will be shared among the stakeholders. Various distributed ledgers (DLTs) such as blockchain provide an open, public, immutable system that has numerous applications due the mentioned abilities. In this paper the authors have proposed a solution based on blockchain to increase the security and transparency in the tracing of COVID-19 vaccination vials. Smart contracts have been developed to monitor the supply, distribution of vaccination vials. The proposed solution will help to generate a tamper-proof and secure environment for the distribution of COVID-19 vaccination vials. Proof of delivery is used as a consensus mechanism for the proposed solution. A feedback feature is also implemented in order to track the vials lot in case of any side effect cause to the patient. The authors have implemented and tested the proposed solution using Ethereum test network, RinkeyBy, MetaMask, one clicks DApp. The proposed solution shows promising results in terms of throughput and scalability.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34831960

RESUMEN

COVID-19 declared as a pandemic that has a faster rate of infection and has impacted the lives and the country's economy due to forced lockdowns. Its detection using RT-PCR is required long time and due to which its infection has grown exponentially. This creates havoc for the shortage of testing kits in many countries. This work has proposed a new image processing-based technique for the health care systems named "C19D-Net", to detect "COVID-19" infection from "Chest X-Ray" (XR) images, which can help radiologists to improve their accuracy of detection COVID-19. The proposed system extracts deep learning (DL) features by applying the InceptionV4 architecture and Multiclass SVM classifier to classify and detect COVID-19 infection into four different classes. The dataset of 1900 Chest XR images has been collected from two publicly accessible databases. Images are pre-processed with proper scaling and regular feeding to the proposed model for accuracy attainments. Extensive tests are conducted with the proposed model ("C19D-Net") and it has succeeded to achieve the highest COVID-19 detection accuracy as 96.24% for 4-classes, 95.51% for three-classes, and 98.1% for two-classes. The proposed method has outperformed well in expressions of "precision", "accuracy", "F1-score" and "recall" in comparison with most of the recent previously published methods. As a result, for the present situation of COVID-19, the proposed "C19D-Net" can be employed in places where test kits are in short supply, to help the radiologists to improve their accuracy of detection of COVID-19 patients through XR-Images.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Control de Enfermedades Transmisibles , Humanos , Redes Neurales de la Computación , SARS-CoV-2 , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...