Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Med ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871006

RESUMEN

Outbreaks of monkeypox (mpox) have historically resulted from zoonotic spillover of clade I monkeypox virus (MPXV) in Central Africa and clade II MPXV in West Africa. In 2022, subclade IIb caused a global epidemic linked to transmission through sexual contact. Here we describe the epidemiological and genomic features of an mpox outbreak in a mining region in eastern Democratic Republic of the Congo, caused by clade I MPXV. Surveillance data collected between September 2023 and January 2024 identified 241 suspected cases. Genomic analysis demonstrates a distinct clade I lineage divergent from previously circulating strains in the Democratic Republic of the Congo. Of the 108 polymerase chain reaction-confirmed mpox cases, the median age of individuals was 22 years, 51.9% were female and 29% were sex workers, suggesting a potential role for sexual transmission. The predominance of APOBEC3-type mutations and the estimated emergence time around mid-September 2023 imply recent sustained human-to-human transmission.

2.
Parasitol Int ; 100: 102866, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38350548

RESUMEN

Malaria infections in school-age children further make it difficult to control the disease's spread. Moreover, the genetic diversity of glutamate-rich protein, potentially a candidate for vaccine development, has not yet been investigated in the Democratic Republic of Congo. Therefore, we aimed to assess the genetic diversity of the immunodominant C-terminal repetitive region (R2) of Plasmodium falciparum glutamate-rich protein gene (pfglurp) among school-age children living in Kinshasa, DRC. We conducted nested PCR targeting R2 of pfglurp and the amplicon were directly sequenced. We summarized the prevalence of mutations of bases and amino acids and indicated the amino acid repeat sequence in the R2 region by the unit code. We then statistically analyzed whether there was a relationship between the number of mutations in the pfglurp gene and attributes. In 221 samples, haplotype 1 was the most common (n = 137, 61.99%), with the same sequence as the 3D7 strain. Regarding the number of base mutations, it was higher in urban areas than rural areas (p = 0.0363). When genetic neutrality was tested using data from 171 samples of the single strain, Tajima's D was -1.857 (p = 0.0059). In addition, FST as the genetic distance between all attributes was very small and no significant difference was observed. This study clarified the genetic mutation status and relevant patient attributes among School-age children in the DRC. We found that urban areas are more likely to harbour pfglurp mutations. Future research needs to clarify the reason and mechanism involved.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Niño , Humanos , Plasmodium falciparum/genética , Malaria Falciparum/epidemiología , Ácido Glutámico , República Democrática del Congo/epidemiología , Proteínas Protozoarias/genética , Mutación , Variación Genética
3.
Malar J ; 22(1): 102, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941587

RESUMEN

BACKGROUND: Understanding Plasmodium falciparum population diversity and transmission dynamics provides information on the intensity of malaria transmission, which is needed for assessing malaria control interventions. This study aimed to determine P. falciparum allelic diversity and multiplicity of infection (MOI) among asymptomatic and symptomatic school-age children in Kinshasa Province, Democratic Republic of Congo (DRC). METHODS: A total of 438 DNA samples (248 asymptomatic and 190 symptomatic) were characterized by nested PCR and genotyping the polymorphic regions of pfmsp1 block 2 and pfmsp2 block 3. RESULTS: Nine allele types were observed in pfmsp1 block2. The K1-type allele was predominant with 78% (229/293) prevalence, followed by the MAD20-type allele (52%, 152/293) and RO33-type allele (44%, 129/293). Twelve alleles were detected in pfmsp2, and the 3D7-type allele was the most frequent with 84% (256/304) prevalence, followed by the FC27-type allele (66%, 201/304). Polyclonal infections were detected in 63% (95% CI 56, 69) of the samples, and the MOI (SD) was 1.99 (0.97) in P. falciparum single-species infections. MOIs significantly increased in P. falciparum isolates from symptomatic parasite carriers compared with asymptomatic carriers (2.24 versus 1.69, adjusted b: 0.36, (95% CI 0.01, 0.72), p = 0.046) and parasitaemia > 10,000 parasites/µL compared to parasitaemia < 5000 parasites/µL (2.68 versus 1.63, adjusted b: 0.89, (95% CI 0.46, 1.25), p < 0.001). CONCLUSION: This survey showed low allelic diversity and MOI of P. falciparum, which reflects a moderate intensity of malaria transmission in the study areas. MOIs were more likely to be common in symptomatic infections and increased with the parasitaemia level. Further studies in different transmission zones are needed to understand the epidemiology and parasite complexity in the DRC.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Niño , República Democrática del Congo/epidemiología , Proteína 1 de Superficie de Merozoito/genética , Antígenos de Protozoos/genética , Proteínas Protozoarias/genética , Variación Genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Parasitemia/parasitología
4.
Pathogens ; 11(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35889975

RESUMEN

Despite a decade of sustained malaria control, malaria remains a serious public health problem in the Democratic Republic of Congo (DRC). Children under five years of age and school-age children aged 5-15 years remain at high risk of symptomatic and asymptomatic malaria infections. The World Health Organization's malaria control, elimination, and eradication recommendations are still only partially implemented in DRC. For better malaria control and eventual elimination, the integration of all individuals into the national malaria control programme will strengthen malaria control and elimination strategies in the country. Thus, inclusion of schools and school-age children in DRC malaria control interventions is needed.

5.
Malar J ; 21(1): 126, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439987

RESUMEN

BACKGROUND: Loss of efficacy of diagnostic tests may lead to untreated or mistreated malaria cases, compromising case management and control. There is an increasing reliance on rapid diagnostic tests (RDTs) for malaria diagnosis, with the most widely used of these targeting the Plasmodium falciparum histidine-rich protein 2 (PfHRP2). There are numerous reports of the deletion of this gene in P. falciparum parasites in some populations, rendering them undetectable by PfHRP2 RDTs. The aim of this study was to identify P. falciparum parasites lacking the P. falciparum histidine rich protein 2 and 3 genes (pfhrp2/3) isolated from asymptomatic and symptomatic school-age children in Kinshasa, Democratic Republic of Congo. METHODS: The performance of PfHRP2-based RDTs in comparison to microscopy and PCR was assessed using blood samples collected and spotted on Whatman 903™ filter papers between October and November 2019 from school-age children aged 6-14 years. PCR was then used to identify parasite isolates lacking pfhrp2/3 genes. RESULTS: Among asymptomatic malaria carriers (N = 266), 49%, 65%, and 70% were microscopy, PfHRP2_RDT, and pfldh-qPCR positive, respectively. The sensitivity and specificity of RDTs compared to PCR were 80% and 70% while the sensitivity and specificity of RDTs compared to microscopy were 92% and 60%, respectively. Among symptomatic malaria carriers (N = 196), 62%, 67%, and 87% were microscopy, PfHRP2-based RDT, pfldh-qPCR and positive, respectively. The sensitivity and specificity of RDTs compared to PCR were 75% and 88%, whereas the sensitivity and specificity of RDTs compared to microscopy were 93% and 77%, respectively. Of 173 samples with sufficient DNA for PCR amplification of pfhrp2/3, deletions of pfhrp2 and pfhrp3 were identified in 2% and 1%, respectively. Three (4%) of samples harboured deletions of the pfhrp2 gene in asymptomatic parasite carriers and one (1%) isolate lacked the pfhrp3 gene among symptomatic parasite carriers in the RDT positive subgroup. No parasites lacking the pfhrp2/3 genes were found in the RDT negative subgroup. CONCLUSION: Plasmodium falciparum histidine-rich protein 2/3 gene deletions are uncommon in the surveyed population, and do not result in diagnostic failure. The use of rigorous PCR methods to identify pfhrp2/3 gene deletions is encouraged in order to minimize the overestimation of their prevalence.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Antígenos de Protozoos/genética , Niño , República Democrática del Congo/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Eliminación de Gen , Histidina/genética , Humanos , Malaria/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Plasmodium falciparum/genética , Prevalencia , Proteínas Protozoarias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Parasitol Int ; 88: 102541, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35051550

RESUMEN

BACKGROUND: The emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs constitutes an obstacle to malaria control and elimination. This study aimed to identify the prevalence of polymorphisms in pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt genes in isolates from asymptomatic and symptomatic school-age children in Kinshasa. METHODS: Nested-PCR followed by sequencing was performed for the detection of pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt polymorphisms. RESULTS: Two mutations in pfk13, C532S and Q613E were identified in the Democratic Republic of Congo for the first time. The prevalence of the drug-resistance associated mutations pfcrt K76T, pfdhps K540E and pfmdr1 N86Y was low, being 27%, 20% and 9%, respectively. CONCLUSION: We found a low prevalence of genetic markers associated with chloroquine and sulfadoxine-pyrimethamine resistance in Kinshasa. Furthermore, no mutations previously associated with resistance against artemisinin and its derivatives were observed in the pfK13 gene. These findings support the continued use of ACTs and IPTp-SP. Continuous molecular monitoring of antimalarial resistance markers is recommended.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Niño , República Democrática del Congo/epidemiología , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Marcadores Genéticos , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum , Proteínas Protozoarias/genética , Pirimetamina , Sulfadoxina/uso terapéutico
7.
Malar J ; 20(1): 389, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600558

RESUMEN

BACKGROUND: Malaria remains a major public health concern in the Democratic Republic of Congo (DRC), and school-age children are relatively neglected in malaria prevalence surveys and may constitute a significant reservoir of transmission. This study aimed to understand the burden of malaria infections in school-age children in Kinshasa/DRC. METHODS: A total of 634 (427 asymptomatic and 207 symptomatic) blood samples collected from school-age children aged 6 to 14 years were analysed by microscopy, RDT and Nested-PCR. RESULTS: The overall prevalence of Plasmodium spp. by microscopy, RDT and PCR was 33%, 42% and 62% among asymptomatic children and 59%, 64% and 95% in symptomatic children, respectively. The prevalence of Plasmodium falciparum, Plasmodium malariae and Plasmodium ovale spp. by PCR was 58%, 20% and 11% among asymptomatic and 93%, 13% and 16% in symptomatic children, respectively. Among P. ovale spp., P. ovale curtisi, P. ovale wallikeri and mixed P. ovale curtisi + P. ovale wallikeri accounted for 75%, 24% and 1% of infections, respectively. All Plasmodium species infections were significantly more prevalent in the rural area compared to the urban area in asymptomatic infections (p < 0.001). Living in a rural as opposed to an urban area was associated with a five-fold greater risk of asymptomatic malaria parasite carriage (p < 0.001). Amongst asymptomatic malaria parasite carriers, 43% and 16% of children harboured mixed Plasmodium with P. falciparum infections in the rural and the urban areas, respectively, whereas in symptomatic malaria infections, it was 22% and 26%, respectively. Few children carried single infections of P. malariae (2.2%) and P. ovale spp. (1.9%). CONCLUSION: School-age children are at significant risk from both asymptomatic and symptomatic malaria infections. Continuous systematic screening and treatment of school-age children in high-transmission settings is needed.


Asunto(s)
Malaria/parasitología , Plasmodium/clasificación , Adolescente , Distribución por Edad , Infecciones Asintomáticas/epidemiología , Niño , Estudios Transversales , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , República Democrática del Congo/epidemiología , Humanos , Malaria/sangre , Malaria/diagnóstico , Malaria/epidemiología , Plasmodium/genética , Prevalencia , Población Rural , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...