Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 38(4): 324-336, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36402653

RESUMEN

Animals are facing novel 'timescapes' in which the stimuli entraining their daily activity patterns no longer match historical conditions due to anthropogenic disturbance. However, the ecological effects (e.g., altered physiology, species interactions) of novel activity timing are virtually unknown. We reviewed 1328 studies and found relatively few focusing on anthropogenic effects on activity timing. We suggest three hypotheses to stimulate future research: (i) activity-timing mismatches determine ecological effects, (ii) duration and timing of timescape modification influence effects, and (iii) consequences of altered activity timing vary biogeographically due to broad-scale variation in factors compressing timescapes. The continued growth of sampling technologies promises to facilitate the study of the consequences of altered activity timing, with emerging applications for biodiversity conservation.


Asunto(s)
Biodiversidad , Ecosistema , Animales
2.
Evolution ; 76(1): 58-69, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862965

RESUMEN

Although genetic patterns produced by population isolation during speciation are well documented, the biogeographic and ecological processes that trigger speciation remain poorly understood. Alternative hypotheses for the biogeography and ecology of speciation include geographic isolation combined with niche conservation (soft allopatry) or parapatric distribution on an environmental gradient with niche divergence (ecological speciation). Here, we use species' distributions, environmental data, and two null models (the Random Translation and Rotation and the Background Similarity Test) to test these alternative hypotheses among 28 sister pairs of microendemic lizards in Madagascar. Our results demonstrate strong bimodal peaks along a niche divergence-conservation spectrum, with at least 25 out of 28 sister pairs exhibiting either niche conservation or divergence, and the remaining pairs showing weak ecological signals. Yet despite these significant results, we do not find strong associations of niche conservation with allopatric distributions or niche divergence with parapatric distributions. Our findings thus provide strong evidence of a role for ecological processes driving speciation, rather than the classic expectation of speciation through geographic isolation, but demonstrate that the link between ecological speciation and parapatry is complex and requires further analysis of a broader taxonomic sample to fully resolve.


Asunto(s)
Lagartos , Animales , Ecosistema , Especiación Genética , Lagartos/genética , Madagascar , Filogenia
3.
Ecol Evol ; 11(22): 16006-16020, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824807

RESUMEN

Grassland birds are among the most globally threatened bird groups due to substantial degradation of native grassland habitats. However, the current network of grassland conservation areas may not be adequate for halting population declines and biodiversity loss. Here, we evaluate a network of grassland conservation areas within Wisconsin, U.S.A., that includes both large Focal Landscapes and smaller targeted conservation areas (e.g., Grassland Bird Conservation Areas, GBCAs) established within them. To date, this conservation network has lacked baseline information to assess whether the current placement of these conservation areas aligns with population hot spots of grassland-dependent taxa. To do so, we fitted data from thousands of avian point-count surveys collected by citizen scientists as part of Wisconsin's Breeding Bird Atlas II with multinomial N-mixture models to estimate habitat-abundance relationships, develop spatially explicit predictions of abundance, and establish ecological baselines within priority conservation areas for a suite of obligate grassland songbirds. Next, we developed spatial randomization tests to evaluate the placement of this conservation network relative to randomly placed conservation networks. Overall, less than 20% of species statewide populations were found within the current grassland conservation network. Spatial tests demonstrated a high representation of this bird assemblage within the entire conservation network, but with a bias toward birds associated with moderately tallgrasses relative to those associated with shortgrasses or tallgrasses. We also found that GBCAs had higher representation at Focal Landscape rather than statewide scales. Here, we demonstrated how combining citizen science data with hierarchical modeling is a powerful tool for estimating ecological baselines and conducting large-scale evaluations of an existing conservation network for multiple grassland birds. Our flexible spatial randomization approach offers the potential to be applied to other protected area networks and serves as a complementary tool for conservation planning efforts globally.

4.
Philos Trans R Soc Lond B Biol Sci ; 370(1662): 20140004, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25561665

RESUMEN

The combination of rapid biodiversity loss and limited funds available for conservation represents a major global concern. While there are many approaches for conservation prioritization, few are framed as financial optimization problems. We use recently published avian data to conduct a global analysis of the financial resources required to conserve different quantities of phylogenetic diversity (PD). We introduce a new prioritization metric (ADEPD) that After Downlisting a species gives the Expected Phylogenetic Diversity at some future time. Unlike other metrics, ADEPD considers the benefits to future PD associated with downlisting a species (e.g. moving from Endangered to Vulnerable in the International Union for Conservation of Nature Red List). Combining ADEPD scores with data on the financial cost of downlisting different species provides a cost-benefit prioritization approach for conservation. We find that under worst-case spending $3915 can save 1 year of PD, while under optimal spending $1 can preserve over 16.7 years of PD. We find that current conservation spending patterns are only expected to preserve one quarter of the PD that optimal spending could achieve with the same total budget. Maximizing PD is only one approach within the wider goal of biodiversity conservation, but our analysis highlights more generally the danger involved in uninformed spending of limited resources.


Asunto(s)
Biodiversidad , Aves/genética , Aves/fisiología , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Técnicas de Apoyo para la Decisión , Filogenia , Animales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...