Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Reprod Sci ; 28(7): 1996-2005, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33432532

RESUMEN

Substantial changes in the composition of the vaginal microbiome occur following the end of pregnancy. To identify potential drivers of microbiome changes in individual women during the pregnancy to postpartum transition, we evaluated vaginal samples from 48 pregnant women during their first and third trimesters and postpartum. We determined the species composition of vaginal communities and the vaginal fluid levels of compounds involved in mediating changes in host physiology and the immune system at each time point. We used linear mixed-effects models to characterize associations. Consistent with previous reports, but with a larger sample size, a US population, and variations in the dominant bacteria, the vaginal microbiome was found to be more diverse during the postpartum period. There was a lower abundance of Lactobacillus and significantly higher proportions of Streptococcus anginosus and Prevotella bivia. Moreover, we uniquely demonstrated that postpartum vaginal secretions were also altered postpartum. There were elevated levels of hyaluronan and Hsp70 and decreased levels of the D- and L-lactic acid isomers. We posit that these variations are consequences of alterations in the vagina after delivery that profoundly alter the host environment and, thus, lead to changes in the capability of different bacterial species to survive and proliferate.


Asunto(s)
Microbiota/fisiología , Periodo Posparto , Vagina/microbiología , Adulto , Femenino , Humanos , Lactobacillus/aislamiento & purificación , Embarazo , Prevotella/aislamiento & purificación , Streptococcus anginosus/aislamiento & purificación
2.
mSphere ; 5(6)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298571

RESUMEN

Dominance of Lactobacillus species in vaginal communities is a hallmark of healthy conditions in the female genital tract. Key nutrients for lactobacilli include sugars produced when glycogen is degraded by α-amylase in the vagina. While α-amylase activity has been demonstrated in vaginal fluids, it is unclear whether α-amylases are produced solely by the host, bacteria in the vagina, or both. We screened cervicovaginal mucus from 23 reproductive-age women, characterized the species composition of vaginal communities, measured vaginal pH, and determined levels of amylase activity, glycogen, and lactic acid. Based on differences in these measured variables, one sample from each of four individual donors was selected for metagenomic and proteomic analyses. Of eight putative bacterial amylases identified in the assembled bacterial metagenomes, we detected four in vaginal fluids. These amylases were produced by various bacteria in different vaginal communities. Moreover, no two communities were the same in terms of which bacteria were producing amylases. Although we detected bacterial amylases in vaginal fluids, there was no clear association between the bacterial species that was dominant in a community and the level of amylase activity. This association was likely masked by the presence of human α-amylase, which was also detected in vaginal fluids. Finally, the levels of amylase activity and glycogen were only weakly associated. Our findings show, for the first time, that multiple amylases from both bacterial and human origins can be present simultaneously in the vagina. This work also suggests that the link between glycogen, amylase, and Lactobacillus in the vagina is complex.IMPORTANCE In this study, we show that multiple bacteria in the vaginal community produce amylases that hydrolyze glycogen into simpler sugars (i.e., maltose and maltotriose). These sugars serve as "common goods" that sustain bacterial populations in vaginal communities. Given the temporal changes that are observed in the human vaginal microbiome, we expect the kinds of bacterial amylases produced will also vary over time. These differences influence the pool of resources that are broadly shared and shape the species composition of the vaginal bacterial community.


Asunto(s)
Lactobacillus/crecimiento & desarrollo , Vagina/enzimología , Vagina/microbiología , Vaginosis Bacteriana/enzimología , Vaginosis Bacteriana/microbiología , alfa-Amilasas/metabolismo , Adulto , Femenino , Glucógeno/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Metagenoma , Microbiota , Proteómica , Vagina/metabolismo , Vaginosis Bacteriana/diagnóstico
3.
J Adolesc Health ; 65(1): 130-138, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30879880

RESUMEN

PURPOSE: The purpose of this study was to characterize the composition of vaginal bacterial communities in a cohort of black adolescent women and to determine how the species composition of these communities correlates with levels of estradiol, glycogen, and stress. METHODS: Twenty-one black adolescent women were sampled longitudinally. The composition of their vaginal communities was determined by analyzing the sequences of the V1-V3 regions of 16S rRNA genes, and they were grouped based on patterns in species abundances. The relationships between estradiol, glycogen, psychosocial stress, and the composition of these communities were assessed. RESULTS: Vaginal communities could be distinguished and classified into three groups that differed in the abundances of Lactobacillus. Eighty-one percent of study participants had communities dominated by species of Lactobacillus. Glycogen levels were higher in communities dominated by one or multiple species of Lactobacillus compared with those having low proportions of Lactobacillus. Estradiol and psychosocial stress measurements did not differ among the three groups, whereas estradiol and glycogen exhibited a weak positive relationship that was not statistically significant. CONCLUSIONS: The findings of this pilot study suggest that glycogen levels are associated with vaginal community composition in young black women; however, estradiol and psychosocial stress are not. In addition, the results suggest there is no simple relationship between levels of estradiol and the production of vaginal glycogen.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Estradiol/análisis , Glucógeno/metabolismo , Vagina/microbiología , Adolescente , Femenino , Humanos , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Estudios Longitudinales , Proyectos Piloto , ARN Ribosómico 16S/genética , Saliva , Estrés Psicológico/psicología
4.
Mucosal Immunol ; 11(5): 1477-1486, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29988116

RESUMEN

IgG possesses an important yet little recognized effector function in mucus. IgG bound to viral surface can immobilize otherwise readily diffusive viruses to the mucin matrix, excluding them from contacting target cells and facilitating their elimination by natural mucus clearance mechanisms. Cervicovaginal mucus (CVM) is populated by a microbial community, and its viscoelastic and barrier properties can vary substantially not only across the menstrual cycle, but also in women with distinct microbiota. How these variations impact the "muco-trapping" effector function of IgGs remains poorly understood. Here we obtained multiple fresh, undiluted CVM specimens (n = 82 unique specimens) from six women over time, and employed high-resolution multiple particle tracking to quantify the mobility of fluorescent Herpes Simplex Viruses (HSV-1) in CVM treated with different HSV-1-binding IgG. The IgG trapping potency was then correlated to the menstrual cycle, and the vaginal microbial composition was determined by 16 s rRNA. In the specimens studied, both polyclonal and monoclonal HSV-1-binding IgG appeared to consistently and effectively trap HSV-1 in CVM obtained at different times of the menstrual cycle and containing a diverse spectrum of commensals, including G. vaginalis-dominant microbiota. Our findings underscore the potential broad utility of this "muco-trapping" effector function of IgG to reinforce the vaginal mucosal defense, and motivates further investigation of passive immunization of the vagina as a strategy to protect against vaginally transmitted infections.


Asunto(s)
Moco del Cuello Uterino/inmunología , Cuello del Útero/inmunología , Herpes Simple/inmunología , Inmunoglobulina G/inmunología , Ciclo Menstrual/inmunología , Simplexvirus/inmunología , Vagina/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Moco del Cuello Uterino/virología , Cuello del Útero/virología , Femenino , Células HEK293 , Humanos , Inmunización Pasiva/métodos , ARN Ribosómico 16S/inmunología , Vagina/virología
5.
Yale J Biol Med ; 89(3): 331-337, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27698617

RESUMEN

Four Lactobacillus species, namely L. crispatus , L. iners, L. gasseri, and L. jensenii, commonly dominate the vaginal communities of most reproductive-age women. It is unclear why these particular species, and not others, are so prevalent. Historically, estrogen-induced glycogen production by the vaginal epithelium has been proffered as being key to supporting the proliferation of vaginal lactobacilli. However, the 'fly in the ointment' (that has been largely ignored) is that the species of Lactobacillus commonly found in the human vagina cannot directly metabolize glycogen. It would appear that this riddle has been solved as studies have demonstrated that vaginal lactobacilli can metabolize the products of glycogen depolymerization by α-amylase, and fortunately, amylase activity is found in vaginal secretions. These amylases are presumed to be host-derived, but we suggest that other bacterial populations in vaginal communities could also be sources of amylase in addition to (or instead of) the host. Here we briefly review what is known about human vaginal bacterial communities and discuss how glycogen-derived resources and resource competition might shape the composition and structure of these communities.


Asunto(s)
Vagina/microbiología , Animales , Femenino , Glucógeno/metabolismo , Humanos , Lactobacillus/metabolismo , Microbiota/fisiología , alfa-Amilasas/metabolismo
6.
PLoS One ; 11(6): e0158338, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27362256

RESUMEN

Human cervicovaginal mucus (CVM) is a viscoelastic gel containing a complex mixture of mucins, shed epithelial cells, microbes and macromolecules, such as antibodies, that together serve as the first line of defense against invading pathogens. Here, to investigate the affinity between IgG and different mucus constituents, we used Fluorescence Recovery After Photobleaching (FRAP) to measure the diffusion of IgG in fresh, minimally modified CVM. We found that CVM exhibits substantial spatial variations that necessitate careful selection of the regions in which to perform FRAP. In portions of CVM devoid of cells, FRAP measurements using different IgG antibodies and labeling methods consistently demonstrate that both exogenous and endogenous IgG undergo rapid diffusion, almost as fast as in saline, in good agreement with the rapid diffusion of IgG in mid-cycle endocervical mucus that is largely devoid of cells. This rapid diffusion indicates the interactions between secreted mucins and IgG must be very weak and transient. IgG also accumulated in cellular debris and shed epithelial cells that had become permeable to IgG, which may allow shed epithelial cells to serve as reservoirs of secreted IgG. Interestingly, in contrast to cell-free regions of CVM, the diffusion of cell-associated IgG was markedly slowed, suggesting greater affinity between IgG and cellular constituents. Our findings contribute to an improved understanding of the role of IgG in mucosal protection against infectious diseases, and may also provide a framework for using FRAP to study molecular interactions in mucus and other complex biological environments.


Asunto(s)
Moco del Cuello Uterino/inmunología , Células Epiteliales/inmunología , Inmunoglobulina G/metabolismo , Transporte Biológico , Sistema Libre de Células , Moco del Cuello Uterino/citología , Células Epiteliales/citología , Femenino , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Vagina/citología , Vagina/inmunología
7.
Acta Biomater ; 43: 61-70, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27424083

RESUMEN

UNLABELLED: Antibodies that specifically bind polyethylene glycol (PEG) can lead to rapid elimination of PEGylated therapeutics from the systemic circulation. We have recently shown that virus-binding IgG can immobilize viruses in mucus via multiple low-affinity crosslinks between IgG and mucins. However, it remains unclear whether anti-PEG antibodies in mucus may also alter the penetration and consequently biodistribution of PEGylated nanoparticles delivered to mucosal surfaces. We found that both anti-PEG IgG and IgM can readily bind nanoparticles that were densely coated with PEG polymer to minimize adhesive interactions with mucus constituents. Addition of anti-PEG IgG and IgM into mouse cervicovaginal mucus resulted in extensive trapping of mucus-penetrating PEGylated nanoparticles, with the fraction of mobile particles reduced from over 95% to only 34% and 7% with anti-PEG IgG and IgM, respectively. Surprisingly, we did not observe significant agglutination induced by either antibody, suggesting that particle immobilization is caused by adhesive crosslinks between mucin fibers and IgG or IgM bound to individual nanoparticles. Importantly, addition of corresponding control antibodies did not slow the PEGylated nanoparticles, confirming anti-PEG antibodies specifically bound to and trapped the PEGylated nanoparticles. Finally, we showed that trapped PEGylated nanoparticles remained largely in the luminal mucus layer of the mouse vagina even when delivered in hypotonic formulations that caused untrapped particles to be drawn by the flow of water (advection) through mucus all the way to the epithelial surface. These results underscore the potential importance of elucidating mucosal anti-PEG immune responses for PEGylated therapeutics and biomaterials applied to mucosal surfaces. STATEMENT OF SIGNIFICANCE: PEG, generally considered a 'stealth' polymer, is broadly used to improve the circulation times and therapeutic efficacy of nanomedicines. Nevertheless, there is increasing scientific evidence that demonstrates both animals and humans can generate PEG-specific antibodies. Here, we show that anti-PEG IgG and IgM can specifically immobilize otherwise freely diffusing PEG-coated nanoparticles in fresh vaginal mucus gel ex vivo by crosslinking nanoparticles to the mucin mesh, and consequently prevent PEG-coated nanoparticles from accessing the vaginal epithelium in vivo. Given the increasing use of PEG coatings to enhance nanoparticle penetration of mucosal barriers, our findings demonstrate that anti-PEG immunity may be a potential concern not only for systemic drug delivery but also for mucosal drug delivery.


Asunto(s)
Anticuerpos/farmacología , Moco/metabolismo , Nanopartículas/química , Polietilenglicoles/metabolismo , Animales , Especificidad de Anticuerpos/efectos de los fármacos , Cuello del Útero/metabolismo , Difusión , Femenino , Secciones por Congelación , Ratones , Distribución Tisular/efectos de los fármacos , Vagina/metabolismo
8.
mBio ; 6(5): e01084-15, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26443453

RESUMEN

UNLABELLED: Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. IMPORTANCE: Variations in the vaginal microbiota, especially shifts away from Lactobacillus-dominant microbiota, are associated with differential risks of acquiring HIV or other sexually transmitted infections. However, emerging evidence suggests that Lactobacillus iners frequently colonizes women with recurring bacterial vaginosis, raising the possibility that L. iners may not be as protective as other Lactobacillus species. Our study was designed to improve understanding of how the cervicovaginal mucus barrier against HIV may vary between women along with the vaginal microbiota and led to the finding that the vaginal microbiota, including specific species of Lactobacillus, can directly alter the diffusional barrier properties of cervicovaginal mucus. This work advances our understanding of the complex barrier properties of mucus and highlights the differential protective ability of different species of Lactobacillus, with Lactobacillus crispatus and possibly other species playing a key role in protection against HIV and other sexually transmitted infections. These findings could lead to the development of novel strategies to protect women against HIV.


Asunto(s)
Cuello del Útero/inmunología , VIH-1/aislamiento & purificación , Lactobacillus/crecimiento & desarrollo , Moco/microbiología , Moco/virología , Vagina/inmunología , Adulto , Femenino , Gardnerella vaginalis/crecimiento & desarrollo , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/análisis , Moco/química , Moco/metabolismo , Adulto Joven
9.
J Control Release ; 220(Pt A): 37-43, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26478013

RESUMEN

Tracking the dynamic motion of individual nanoparticles or viruses offers quantitative insights into their real-time behavior and fate in different biological environments. Indeed, particle tracking is a powerful tool that has facilitated the development of drug carriers with enhanced penetration of mucus, brain tissues and other extracellular matrices. Nevertheless, heterogeneity is a hallmark of nanoparticle diffusion in such complex environments: identical particles can exhibit strongly hindered or unobstructed diffusion within microns of each other. The common practice in 2D particle tracking, namely analyzing all trackable particle traces with equal weighting, naturally biases towards rapidly diffusing sub-populations at shorter time scales. This in turn results in misrepresentation of particle behavior and a systematic underestimate of the time necessary for a population of nanoparticles to diffuse specific distances. We show here via both computational simulation and experimental data that this bias can be rigorously corrected by weighing the contribution by each particle trace on a 'frame-by-frame' basis. We believe this methodology presents an important step towards objective and accurate assessment of the heterogeneous transport behavior of submicron drug carriers and pathogens in biological environments.


Asunto(s)
Líquidos Corporales/metabolismo , Portadores de Fármacos , Nanopartículas , Sesgo , Transporte Biológico , Femenino , Humanos , Moco/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...