Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7991): 366-377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092913

RESUMEN

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Asunto(s)
Encéfalo , Metilación de ADN , Epigenoma , Multiómica , Análisis de la Célula Individual , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Conjuntos de Datos como Asunto , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Nature ; 624(7991): 378-389, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092917

RESUMEN

Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete1-4. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections. The atlas includes approximately 1 million cCREs and their chromatin accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs to the most recent such annotation in the mouse genome. The mouse brain cCREs are moderately conserved in the human brain. The mouse-specific cCREs-specifically, those identified from a subset of cortical excitatory neurons-are strongly enriched for transposable elements, suggesting a potential role for transposable elements in the emergence of new regulatory programs and neuronal diversity. Finally, we infer the gene regulatory networks in over 260 subclasses of mouse brain cells and develop deep-learning models to predict the activities of gene regulatory elements in different brain cell types from the DNA sequence alone. Our results provide a resource for the analysis of cell-type-specific gene regulation programs in both mouse and human brains.


Asunto(s)
Encéfalo , Cromatina , Análisis de la Célula Individual , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Corteza Cerebral/citología , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Aprendizaje Profundo , Elementos Transponibles de ADN/genética , Redes Reguladoras de Genes/genética , Neuronas/metabolismo
3.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131654

RESUMEN

Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions of differentially methylated regions (DMRs) across the genome, representing potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation and topology information into anatomical structures more precisely than our dissections. Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, highly associated with DNA methylation and transcription changes. Brain-wide cell type comparison allowed us to build a regulatory model for each gene, linking transcription factors, DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and regulatory genome diversity.

4.
Nature ; 598(7879): 120-128, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616061

RESUMEN

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Asunto(s)
Encéfalo/citología , Metilación de ADN , Epigenoma , Epigenómica , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Animales , Atlas como Asunto , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/química , Citosina/metabolismo , Conjuntos de Datos como Asunto , Giro Dentado/citología , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Vías Nerviosas , Neuronas/citología
5.
Nature ; 598(7879): 129-136, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616068

RESUMEN

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.


Asunto(s)
Cerebro/citología , Cerebro/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Atlas como Asunto , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/genética , Neuroglía/clasificación , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula Individual
6.
BMJ Glob Health ; 4(2): e001283, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139446

RESUMEN

With rising population numbers, anthropogenic changes to our environment and unprecedented global connectivity, the World Economic Forum ranks the spread of infectious diseases second only to water crises in terms of potential global impact. Addressing the diverse challenges to human health and well-being in the 21st century requires an overarching focus on 'Planetary Health', with input from all sectors of government, non-governmental organisations, academic institutions and industry. To clarify and advance the Planetary Health agenda within Australia, specifically in relation to emerging infectious diseases (EID) and antimicrobial resistance (AMR), national experts and key stakeholders were invited to a facilitated workshop. EID themes identified included animal reservoirs, targeted surveillance, mechanisms of emergence and the role of unrecognised human vectors (the 'invisible man') in the spread of infection. Themes related to AMR included antimicrobial use in production and companion animals, antimicrobial stewardship, novel treatment approaches and education of professionals, politicians and the general public. Effective infection control strategies are important in both EID and AMR. We provide an overview of key discussion points, as well as important barriers identified and solutions proposed.

7.
J Am Chem Soc ; 138(30): 9473-8, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27379525

RESUMEN

Apolipoprotein E (ApoE) belongs to a large class of proteins that solubilize lipids for physiological transport. Humans have three different APOE alleles, APOE ε2, APOE ε3, and APOE ε4, and genetic studies identified ApoE4 as the strongest genetic risk factor for Alzheimer's disease (AD). People who are homozygous for ApoE4 (i.e., ApoE4/E4) are an order of magnitude more likely to develop late-onset AD (LOAD) than ApoE3/E3 carriers. Several differences between ApoE3 and ApoE4 may contribute to AD including the observation that ApoE4 is degraded to a greater extent than ApoE3 in the human brain. Experiments with high-temperature requirement serine peptidase A1 (HtrA1), which is found in the nervous system, demonstrate that HtrA1 is an allele-selective ApoE-degrading enzyme that degrades ApoE4 more quickly than ApoE3. This activity is specific to HtrA1, as similar assays with HtrA2 showed minimal ApoE4 proteolysis and trypsin had no preference between ApoE4 and ApoE3. HtrA1 has also been reported to cleave the tau protein (Tau) and the amyloid protein precursor (APP) to hinder the formation of toxic amyloid deposits associated with AD. Competition assays with ApoE4, ApoE3, and Tau revealed that ApoE4 inhibits Tau degradation. Thus, the identification of ApoE4 as an in vitro HtrA1 substrate suggests a potential biochemical mechanism that links ApoE4 regulation of AD proteins such as Tau.


Asunto(s)
Alelos , Apolipoproteínas E/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Proteolisis , Células HEK293 , Serina Peptidasa A1 que Requiere Temperaturas Altas/química , Humanos , Modelos Moleculares , Conformación Proteica
8.
J Neurovirol ; 14(6): 465-73, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19031289

RESUMEN

Over 8.3 million people living in the Asia Pacific region are human immunodeficiency virus (HIV) positive and up to 40% of these individuals have had prior acquired immunodeficiency syndrome (AIDS) illnesses. Recently endeavors have been made to better characterize the burden of HIV-related neurological disease within the Asia Pacific region and, with this in mind, the NeuroAIDS in Asia and the Pacific Rim workshop was held in Sydney, Australia, as an affiliated event of the 4th IAS Conference on HIV Pathogenesis, Treatment and Prevention. The workshop was supported by the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute of Mental Health (NIMH) of the United States National Institutes of Health and the Australian Government overseas AID program, AusAID. HIV neurologists, infectious disease physicians, pediatricians, psychiatrists, immunologists, virologists,and researchers from 12 countries of the Asia Pacific region (including Australia), the United States, and the United Kingdom attended the meeting. A broad range of topics were addressed, including common HIV neurological disorders, the lack of diagnostic, management, and research infrastructure, central nervous system (CNS) immune restoration disease, pediatric neuroAIDS, and current clinical and laboratory research projects being undertaken within the Asia Pacific region.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/complicaciones , Síndrome de Inmunodeficiencia Adquirida/epidemiología , VIH-1 , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/virología , Adulto , Asia/epidemiología , Niño , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia , Islas del Pacífico/epidemiología
11.
Chem Commun (Camb) ; (17): 1966-7, 2004 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-15340624

RESUMEN

The combination of (Bu(3)Sn)(2) and TBAF has been shown to reduce aromatic bromides and iodides in excellent yields under mild conditions. When the residual water in TBAF is exchanged for D(2)O, the halogen is replaced by a deuterium atom.

12.
Int J Antimicrob Agents ; 20(3): 153-64, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12385693

RESUMEN

In recent years, there has been increasing concern that the use of antibiotics in food-producing animals, particularly their long-term use for growth promotion, contributes to the emergence of antibiotic-resistant bacteria in animals. These resistant bacteria may spread from animals to humans via the food chain. They may also transfer their antibiotic-resistance genes into human pathogenic bacteria, leading to failure of antibiotic treatment for some, possibly life-threatening, human conditions. To assist regulatory decision making, the actual risk to human health from antibiotic use in animals needs to be determined (risk assessment) and the requirements for risk minimisation (risk management and risk communication) determined. We propose a novel method of risk analysis involving risk assessment for three interrelated hazards: the antibiotic (chemical agent), the antibiotic-resistant bacterium (microbiological agent) and the antibiotic-resistance gene (genetic agent). Risk minimisation may then include control of antibiotic use and/or the reduction of the spread of bacterial infection and/or prevention of transfer of resistance determinants between bacterial populations.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Industria de Alimentos/métodos , Medición de Riesgo/métodos , Alimentación Animal , Crianza de Animales Domésticos , Animales , Antibacterianos/administración & dosificación , Bacterias/genética , Comercio , Utilización de Medicamentos/legislación & jurisprudencia , Microbiología de Alimentos , Humanos , Salud Pública/métodos , Zoonosis/etiología , Zoonosis/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA