Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Epilepsy Behav ; 157: 109876, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38851123

RESUMEN

OBJECTIVE: Over recent years, there has been a growing interest in exploring the utility of seizure risk forecasting, particularly how it could improve quality of life for people living with epilepsy. This study reports on user experiences and perspectives of a seizure risk forecaster app, as well as the potential impact on mood and adjustment to epilepsy. METHODS: Active app users were asked to complete a survey (baseline and 3-month follow-up) to assess perspectives on the forecast feature as well as mood and adjustment. Post-hoc, nine neutral forecast users (neither agreed nor disagreed it was useful) completed semi-structured interviews, to gain further insight into their perspectives of epilepsy management and seizure forecasting. Non-parametric statistical tests and inductive thematic analyses were used to analyse the quantitative and qualitative data, respectively. RESULTS: Surveys were completed by 111 users. Responders consisted of "app users" (n = 58), and "app and forecast users" (n = 53). Of the "app and forecast users", 40 % believed the forecast was accurate enough to be useful in monitoring for seizure risk, and 60 % adopted it for purposes like scheduling activities and helping mental state. Feeling more in control was the most common response to both high and low risk forecasted states. In-depth interviews revealed five broad themes, of which 'frustrations with lack of direction' (regarding their current epilepsy management approach), 'benefits of increased self-knowledge' and 'current and anticipated usefulness of forecasting' were the most common. SIGNIFICANCE: Preliminary results suggest that seizure risk forecasting can be a useful tool for people with epilepsy to make lifestyle changes, such as scheduling daily events, and experience greater feelings of control. These improvements may be attributed, at least partly, to the improvements in self-knowledge experienced through forecast use.

2.
Epilepsia ; 65(5): 1406-1414, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502150

RESUMEN

OBJECTIVE: Clinical decisions on managing epilepsy patients rely on patient accuracy regarding seizure reporting. Studies have noted disparities between patient-reported seizures and electroencephalographic (EEG) findings during video-EEG monitoring periods, chiefly highlighting underreporting of seizures, a well-recognized phenomenon. However, seizure overreporting is a significant problem discussed within the literature, although not in such a large cohort. Our aim is to quantify the over- and underreporting of seizures in a large cohort of ambulatory EEG patients. METHODS: We performed a retrospective data analysis on 3407 patients referred to a diagnostic service for ambulatory video-EEG between 2020 and 2022. Both patient-reported events and events discovered on review of the video-EEG were analyzed and classified as epileptic, psychogenic (typically clinical motor events, without accompanying EEG change), or noncorrelated events (NCEs; without perceivable clinical or EEG change). Events were analyzed by state of arousal and indication for referral. Subgroup analysis was performed in patients with focal and generalized epilepsies. RESULTS: A total of 21 024 events were recorded by 3407 patients. Fifty-eight percent of reported events were NCEs, whereas 27% of all events were epileptic. Sixty-four percent of epileptic seizures were not reported by the patient but discovered by the clinical service on review of the recording. NCEs were in the highest proportion in the awake and drowsy arousal states and were the most common event type for the majority of referral indications. Subgroup analysis found a significantly higher proportion of NCEs in the patients with focal epilepsy (23%) compared to generalized epilepsy (10%; p < .001, chi-squared proportion test). SIGNIFICANCE: Our results reaffirm the phenomenon of underreporting and highlight the prevalence of overreporting. Overreporting likely represents irrelevant symptoms or electrographic discharges not represented on scalp electrodes, identification of which has important clinical relevance. Future studies should analyze events by risk factors to elucidate relationships clinicians can use and investigate the etiology of NCEs.


Asunto(s)
Electroencefalografía , Convulsiones , Humanos , Electroencefalografía/métodos , Convulsiones/diagnóstico , Convulsiones/epidemiología , Convulsiones/fisiopatología , Estudios Retrospectivos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Grabación en Video , Adulto Joven , Adolescente , Epilepsia/epidemiología , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Autoinforme , Anciano , Niño
3.
Epilepsia ; 65(4): 1017-1028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366862

RESUMEN

OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Dispositivos Electrónicos Vestibles , Humanos , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Convulsiones/diagnóstico , Convulsiones/terapia , Epilepsia/diagnóstico , Electroencefalografía/métodos
4.
Seizure ; 117: 50-55, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325220

RESUMEN

OBJECTIVE: This retrospective chart review aims to quantify the rate of patients with intellectual disability (ID) accessing an Australian ambulatory EEG service, and understand the clinical implications of discontinuing studies prematurely. METHODS: Electronic records of referrals, patient monitoring notes, and EEG reports were accessed retrospectively. Each referral was assessed to determine whether the patient had an ID. For each study where patients were discharged prematurely, the outcomes of their EEG report were assessed and compared between the ID and non-ID groups. Exploratory analysis was performed assessing the effects of age, the percentage of the requested monitoring undertaken, and outcome rates as a function of monitoring duration. RESULTS: There were significantly more patients in the ID group with early disconnection than the non-ID group (Chi squared test, p = 0.000). There was no significant difference in the rates of clinical outcomes between the ID and non-ID groups amongst patients who disconnected early. CONCLUSIONS: Although rates of early disconnection are higher in those with ID, study outcomes are largely similar between patients with and without ID in this retrospective analysis of an ambulatory EEG service. SIGNIFICANCE: Ambulatory EEG is a viable modality of EEG monitoring for patients with ID.


Asunto(s)
Electroencefalografía , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/fisiopatología , Estudios Retrospectivos , Masculino , Femenino , Adulto , Adulto Joven , Persona de Mediana Edad , Adolescente , Niño , Atención Ambulatoria/estadística & datos numéricos , Epilepsia/fisiopatología , Australia , Monitoreo Ambulatorio , Anciano
5.
Epilepsy Behav ; 153: 109652, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401413

RESUMEN

OBJECTIVES: Ambulatory video-electroencephalography (video-EEG) represents a low-cost, convenient and accessible alternative to inpatient video-EEG monitoring, however few studies have examined their diagnostic yield. In this large-scale retrospective study conducted in Australia, we evaluated the efficacy of prolonged ambulatory video-EEG recordings in capturing diagnostic events and resolving the referring question. METHODS: Sequential adult and paediatric ambulatory video-EEG reports from April 2020 to June 2021 were reviewed retrospectively. Data collection included patient demographics, clinical information, and details of events and EEG abnormalities. Clinical utility was assessed by examining i) time to first diagnostic event, and ii) ability to resolve the referring questions - seizure localisation, quantification, classification, and differentiation (differentiating seizures from non-epileptic events). RESULTS: Of the 600 reports analysed, 49 % captured at least one event, and 45 % captured interictal abnormalities (epileptiform or non-epileptiform). Seizures, probable psychogenic events (mostly non-convulsive), and other non-epileptic events occurred in 13 %, 23 % and 21 % of recordings respectively, with overlap. Unreported events were captured in 53 (9 %) recordings, and unreported seizures represented more than half of all seizures captured (51 %, 392/773). Nine percent of events were missing clinical, video or electrographic data. A diagnostic event occurred in 244 (41 %) recordings, of which 14 % were captured between the fifth and eighth day of recording. Reported event frequency ≥ 1/week was the only significant predictor of diagnostic event capture. In recordings with both seizures and psychogenic events, unrecognized seizures were frequent, and seizures may be missed if recording is terminated early. The referring question was resolved in 85 % of reports with at least one event, and 53 % of all reports. Specifically, this represented 46 % of reports (235/512) for differentiation of events, and 75 % of reports (27/36) for classification of seizures. CONCLUSION: Ambulatory video-EEG recordings are of high diagnostic value in capturing clinically relevant events and resolving the referring clinical questions.


Asunto(s)
Epilepsia , Adulto , Niño , Humanos , Epilepsia/diagnóstico , Estudios Retrospectivos , Convulsiones/diagnóstico , Convulsiones/psicología , Monitoreo Ambulatorio , Grabación en Video , Electroencefalografía
6.
Epilepsy Behav ; 151: 109609, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160578

RESUMEN

BACKGROUND: Recent technological advancements offer new ways to monitor and manage epilepsy. The adoption of these devices in routine clinical practice will strongly depend on patient acceptability and usability, with their perspectives being crucial. Previous studies provided feedback from patients, but few explored the experience of them using independently multiple devices independently at home. PURPOSE: The study, assessed through a mixed methods design, the direct experiences of people with epilepsy independently using a non-invasive monitoring system (EEG@HOME) for an extended duration of 6 months, at home. We aimed to investigate factors affecting engagement, gather qualitative insights, and provide recommendations for future home epilepsy monitoring systems. MATERIALS AND METHODS: Adults with epilepsy independently were trained to use a wearable dry EEG system, a wrist-worn device, and a smartphone app for seizure tracking and behaviour monitoring for 6 months at home. Monthly acceptability questionnaires (PSSUQ, SUS) and semi-structured interviews were conducted to explore participant experience. Adherence with the procedure, acceptability scores and systematic thematic analysis of the interviews, focusing on the experience with the procedure, motivation and benefits and opinion about the procedure were assessed. RESULTS: Twelve people with epilepsy took part into the study for an average of 193.8 days (range 61 to 312) with a likelihood of using the system at six months of 83 %. The e-diary and the smartwatch were highly acceptable and preferred to a wearable EEG system (PSSUQ score of 1.9, 1.9, 2.4). Participants showed an acceptable level of adherence with all solutions (Average usage of 63 %, 66 %, 92 %) reporting more difficulties using the EEG twice a day and remembering to complete the daily behavioural questionnaires. Clear information and training, continuous remote support, perceived direct and indirect benefits and the possibility to have a flexible, tailored to daily routine monitoring were defined as key factors to ensure compliance with long-term monitoring systems. CONCLUSIONS: EEG@HOME study demonstrated people with epilepsy' interest and ability in active health monitoring using new technologies. Remote training and support enable independent home use of new non-invasive technologies, but to ensure long term acceptability and usability systems will require to be integrated into patients' routines, include healthcare providers, and offer continuous support and personalized feedback.


Asunto(s)
Epilepsia , Adulto , Humanos , Estudios de Factibilidad , Epilepsia/diagnóstico , Personal de Salud , Encuestas y Cuestionarios , Electroencefalografía
7.
Epilepsy Behav ; 147: 109418, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37677902

RESUMEN

OBJECTIVES: Generalized paroxysmal fast activity (GPFA) is a key electroencephalographic (EEG) feature of Lennox-Gastaut Syndrome (LGS). Automated analysis of scalp EEG has been successful in detecting more typical abnormalities. Automatic detection of GPFA has been more challenging, due to its variability from patient to patient and similarity to normal brain rhythms. In this work, a deep learning model is investigated for detection of GPFA events and estimating their overall burden from scalp EEG. METHODS: Data from 10 patients recorded during four ambulatory EEG monitoring sessions are used to generate and validate the model. All patients had confirmed LGS and were recruited into a trial for thalamic deep-brain stimulation therapy (ESTEL Trial). RESULTS: The correlation coefficient between manual and model estimates of event counts was r2 = 0.87, and for total burden was r2 = 0.91. The average GPFA detection sensitivity was 0.876, with an average false-positive rate of 3.35 per minute. There was no significant difference found between patients with early or delayed deep brain stimulation (DBS) treatment, or those with active vagal nerve stimulation (VNS). CONCLUSIONS: Overall, the deep learning model was able to accurately detect GPFA and provide accurate estimates of the overall GPFA burden and electrographic event counts, albeit with a high false-positive rate. SIGNIFICANCE: Automated GPFA detection may enable automated calculation of EEG biomarkers of burden of disease in LGS.


Asunto(s)
Aprendizaje Profundo , Síndrome de Lennox-Gastaut , Humanos , Síndrome de Lennox-Gastaut/diagnóstico , Encéfalo , Electroencefalografía
9.
Clin Neurophysiol ; 153: 177-186, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453851

RESUMEN

OBJECTIVE: This work aims to determine the ambulatory video electroencephalography monitoring (AVEM) duration and number of captured seizures required to resolve different clinical questions, using a retrospective review of ictal recordings. METHODS: Patients who underwent home-based AVEM had event data analyzed retrospectively. Studies were grouped by clinical indication: differential diagnosis, seizure type classification, or treatment assessment. The proportion of studies where the conclusion was changed after the first seizure was determined, as was the AVEM duration needed for at least 99% of studies to reach a diagnostic conclusion. RESULTS: The referring clinical question was not answered entirely by the first event in 29.6% (n = 227) of studies. Diagnostic and classification indications required a minimum of 7 days for at least 99% of studies to be answered, whilst treatment-assessment required at least 6 days. CONCLUSIONS: At least 7 days of monitoring, and potentially multiple events, are required to adequately answer these clinical questions in at least 99% of patients. The widely applied 72 h or single event recording cut-offs may be inadequate to adequately answer these three indications in a substantial proportion of patients. SIGNIFICANCE: Extended duration of monitoring and capturing multiple events should be considered when attempting to capture seizures on video-EEG.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico , Estudios Retrospectivos , Convulsiones/diagnóstico , Monitoreo Ambulatorio , Electroencefalografía , Grabación en Video
10.
Artículo en Inglés | MEDLINE | ID: mdl-37342948

RESUMEN

Patients with psychogenic non-epileptic seizures (PNES) may exhibit similar clinical features to patients with epileptic seizures (ES). Misdiagnosis of PNES and ES can lead to inappropriate treatment and significant morbidity. This study investigates the use of machine learning techniques for classification of PNES and ES based on electroencephalography (EEG) and electrocardiography (ECG) data. Video-EEG-ECG of 150 ES events from 16 patients and 96 PNES from 10 patients were analysed. Four preictal periods (time before event onset) in EEG and ECG data were selected for each PNES and ES event (60-45 min, 45-30 min, 30-15 min, 15-0 min). Time-domain features were extracted from each preictal data segment in 17 EEG channels and 1 ECG channel. The classification performance using k-nearest neighbour, decision tree, random forest, naive Bayes, and support vector machine classifiers were evaluated. The results showed the highest classification accuracy was 87.83% using the random forest on 15-0 min preictal period of EEG and ECG data. The performance was significantly higher using 15-0 min preictal period data than 30-15 min, 45-30 min, and 60-45 min preictal periods ( [Formula: see text]). The classification accuracy was improved from 86.37% to 87.83% by combining ECG data with EEG data ( [Formula: see text]). The study provided an automated classification algorithm for PNES and ES events using machine learning techniques on preictal EEG and ECG data.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Teorema de Bayes , Convulsiones/diagnóstico , Epilepsia/diagnóstico , Electrocardiografía , Electroencefalografía/métodos
11.
EBioMedicine ; 93: 104656, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37331164

RESUMEN

BACKGROUND: Seizure risk forecasting could reduce injuries and even deaths in people with epilepsy. There is great interest in using non-invasive wearable devices to generate forecasts of seizure risk. Forecasts based on cycles of epileptic activity, seizure times or heart rate have provided promising forecasting results. This study validates a forecasting method using multimodal cycles recorded from wearable devices. METHOD: Seizure and heart rate cycles were extracted from 13 participants. The mean period of heart rate data from a smartwatch was 562 days, with a mean of 125 self-reported seizures from a smartphone app. The relationship between seizure onset time and phases of seizure and heart rate cycles was investigated. An additive regression model was used to project heart rate cycles. The results of forecasts using seizure cycles, heart rate cycles, and a combination of both were compared. Forecasting performance was evaluated in 6 of 13 participants in a prospective setting, using long-term data collected after algorithms were developed. FINDINGS: The results showed that the best forecasts achieved a mean area under the receiver-operating characteristic curve (AUC) of 0.73 for 9/13 participants showing performance above chance during retrospective validation. Subject-specific forecasts evaluated with prospective data showed a mean AUC of 0.77 with 4/6 participants showing performance above chance. INTERPRETATION: The results of this study demonstrate that cycles detected from multimodal data can be combined within a single, scalable seizure risk forecasting algorithm to provide robust performance. The presented forecasting method enabled seizure risk to be estimated for an arbitrary future period and could be generalised across a range of data types. In contrast to earlier work, the current study evaluated forecasts prospectively, in subjects blinded to their seizure risk outputs, representing a critical step towards clinical applications. FUNDING: This study was funded by an Australian Government National Health & Medical Research Council and BioMedTech Horizons grant. The study also received support from the Epilepsy Foundation of America's 'My Seizure Gauge' grant.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Proyectos Piloto , Estudios Prospectivos , Autoinforme , Estudios Retrospectivos , Frecuencia Cardíaca , Australia , Convulsiones/epidemiología , Epilepsia/epidemiología , Predicción
12.
Epilepsia ; 64(9): 2421-2433, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37303239

RESUMEN

OBJECTIVE: Previous studies suggested that patients with epilepsy might be able to forecast their own seizures. This study aimed to assess the relationships between premonitory symptoms, perceived seizure risk, and future and recent self-reported and electroencephalographically (EEG)-confirmed seizures in ambulatory patients with epilepsy in their natural home environments. METHODS: Long-term e-surveys were collected from patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication adherence, sleep quality, mood, stress, perceived seizure risk, and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with the seizure forecasting classifiers and device forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). RESULTS: Fifty-four subjects returned 10 269 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed that increased stress (OR = 2.01, 95% confidence interval [CI] = 1.12-3.61, AUC = .61, p = .02) was associated with increased relative odds of future self-reported seizures. Multivariate analysis showed that previous self-reported seizures (OR = 5.37, 95% CI = 3.53-8.16, AUC = .76, p < .001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (OR = 3.34, 95% CI = 1.87-5.95, AUC = .69, p < .001) remained significant when prior self-reported seizures were added to the model. No correlation with medication adherence was found. No significant association was found between e-survey responses and subsequent EEG seizures. SIGNIFICANCE: Our results suggest that patients may tend to self-forecast seizures that occur in sequential groupings and that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Convulsiones/diagnóstico , Convulsiones/epidemiología , Epilepsia/complicaciones , Epilepsia/diagnóstico , Epilepsia/epidemiología , Electroencefalografía/métodos , Análisis Multivariante , Encuestas y Cuestionarios
13.
medRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034596

RESUMEN

Objective: Previous studies suggested that patients with epilepsy might be able to fore-cast their own seizures. We sought to assess the relationships of premonitory symptoms and perceived seizure risk with future and recent self-reported and EEG-confirmed seizures in the subjects living with epilepsy in their natural home environments. Methods: We collected long-term e-surveys from ambulatory patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication compliance, sleep quality, mood, stress, perceived seizure risk and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with device seizure forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). Results: Sixty-nine subjects returned 12,590 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed increased stress (OR = 2.52, 95% CI = [1.52, 4.14], p < 0.001) and decreased mood (0.32, [0.13, 0.82], 0.02) were associated with increased relative odds of future self-reported seizures. On multivariate analysis, previous self-reported seizures (4.24, [2.69, 6.68], < 0.001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (3.30, [1.97, 5.52], < 0.001) remained significant when prior self-reported seizures were added to the model. No significant association was found between e-survey responses and subsequent EEG seizures. Significance: It appears that patients may tend to self-forecast seizures that occur in sequential groupings. Our results suggest that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting. Key points: Long-term e-surveys data and concurrent EEG signals were collected across three study sites to assess the ability of the patients to self-forecast their seizures.Patients may tend to self-forecast self-reported seizures that occur in sequential groupings.Factors, such as mood and stress, may not be independent premonitory symptoms but may be the consequence of recent seizures.No ability to self-forecast EEG confirmed seizures was observed in a small cohort with concurrent EEG validation.A mathematic relation between OR and AUC provides a means to compare forecasting performance between survey and device studies.

14.
Epilepsia ; 64(6): 1627-1639, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060170

RESUMEN

OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Estudios de Cohortes , Convulsiones/diagnóstico , Electroencefalografía , Monitoreo Ambulatorio
15.
Clin Neurophysiol ; 149: 12-17, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36867914

RESUMEN

OBJECTIVE: Recording electrographic and behavioral information during epileptic and other paroxysmal events is important during video electroencephalography (EEG) monitoring. This study was undertaken to measure the event capture rate of an home service operating across Australia using a shoulder-worn EEG device and telescopic pole-mounted camera. METHODS: Neurologist reports were accessed retrospectively. Studies with confirmed events were identified and assessed for event capture by recording modality, whether events were reported or discovered, and physiological state. RESULTS: 6,265 studies were identified, of which 2,788 (44.50%) had events. A total of 15,691 events were captured, of which 77.89% were reported. The EEG amplifier was active for 99.83% of events. The patient was in view of the camera for 94.90% of events. 84.89% of studies had all events on camera, and 2.65% had zero events on camera (mean = 93.66%, median = 100.00%). 84.42% of events from wakefulness were reported, compared to 54.27% from sleep. CONCLUSIONS: Event capture was similar to previously reported rates from home studies, with higher capture rates on video. Most patients have all events captured on camera. SIGNIFICANCE: Home monitoring is capable of high rates of event capture, and the use of wide-angle cameras allows for all events to be captured in the majority of studies.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Estudios Retrospectivos , Epilepsia/diagnóstico , Monitoreo Fisiológico , Sueño , Grabación en Video
16.
Epilepsia ; 64(3): 742-753, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625418

RESUMEN

OBJECTIVES: Despite the prevalence of cognitive symptoms in the idiopathic generalized epilepsies (IGEs), cognitive dysfunction in juvenile absence epilepsy (JAE), a common yet understudied IGE subtype, remains poorly understood. This descriptive study provides a novel, comprehensive characterization of cognitive functioning in a JAE sample and examines the relationship between cognition and 24-h epileptiform discharge load. METHOD: Forty-four individuals diagnosed with JAE underwent cognitive assessment using Woodcock Johnson III Test of Cognitive Abilities with concurrent 24-h ambulatory EEG monitoring. Generalized epileptiform discharges of any length, and prolonged generalized discharges ≥3 s were quantified across wakefulness and sleep. The relationship between standardized cognitive scores and epileptiform discharges was assessed through regression models. RESULTS: Cognitive performances in overall intellectual ability, acquired comprehension-knowledge, processing speed, long-term memory storage and retrieval, and executive processes were 0.63-1.07 standard deviation (SD) units lower in the JAE group compared to the population reference mean, adjusted for educational attainment. Prolonged discharges (≥3 s) were recorded in 20 patients (47.6%) from 42 available electroencephalography (EEG) studies and were largely unreported. Duration and number of prolonged discharges were associated with reduced processing speed and long-term memory storage and retrieval. SIGNIFICANCE: Cognitive dysfunction is seen in patients with JAE across various cognitive abilities, including those representing more stable processes like general intellect. During 24-h EEG, prolonged epileptiform discharges are common yet underreported in JAE despite treatment, and they show moderate effects on cognitive abilities. If epileptiform burden is a modifiable predictor of cognitive dysfunction, therapeutic interventions should consider quantitative 24-h EEG with routine neuropsychological screening. The growing recognition of the spectrum of neuropsychological comorbidities of IGE highlights the value of multidisciplinary approaches to explore the causes and consequences of cognitive deficits in epilepsy.


Asunto(s)
Epilepsia Tipo Ausencia , Humanos , Estudios Transversales , Electroencefalografía , Cognición , Inmunoglobulina E
17.
Brain ; 146(7): 2803-2813, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511881

RESUMEN

Sleep duration, sleep deprivation and the sleep-wake cycle are thought to play an important role in the generation of epileptic activity and may also influence seizure risk. Hence, people diagnosed with epilepsy are commonly asked to maintain consistent sleep routines. However, emerging evidence paints a more nuanced picture of the relationship between seizures and sleep, with bidirectional effects between changes in sleep and seizure risk in addition to modulation by sleep stages and transitions between stages. We conducted a longitudinal study investigating sleep parameters and self-reported seizure occurrence in an ambulatory at-home setting using mobile and wearable monitoring. Sixty subjects wore a Fitbit smartwatch for at least 28 days while reporting their seizure activity in a mobile app. Multiple sleep features were investigated, including duration, oversleep and undersleep, and sleep onset and offset times. Sleep features in participants with epilepsy were compared to a large (n = 37 921) representative population of Fitbit users, each with 28 days of data. For participants with at least 10 seizure days (n = 34), sleep features were analysed for significant changes prior to seizure days. A total of 4956 reported seizures (mean = 83, standard deviation = 130) and 30 485 recorded sleep nights (mean = 508, standard deviation = 445) were included in the study. There was a trend for participants with epilepsy to sleep longer than the general population, although this difference was not significant. Just 5 of 34 participants showed a significant difference in sleep duration the night before seizure days compared to seizure-free days. However, 14 of 34 subjects showed significant differences between their sleep onset (bed) and/or offset (wake) times before seizure occurrence. In contrast to previous studies, the current study found undersleeping was associated with a marginal 2% decrease in seizure risk in the following 48 h (P < 0.01). Nocturnal seizures were associated with both significantly longer sleep durations and increased risk of a seizure occurring in the following 48 h. Overall, the presented results demonstrated that day-to-day changes in sleep duration had a minimal effect on reported seizures, while patient-specific changes in bed and wake times were more important for identifying seizure risk the following day. Nocturnal seizures were the only factor that significantly increased the risk of seizures in the following 48 h on a group level. Wearables can be used to identify these sleep-seizure relationships and guide clinical recommendations or improve seizure forecasting algorithms.


Asunto(s)
Epilepsia , Duración del Sueño , Humanos , Estudios Longitudinales , Electroencefalografía , Sueño , Epilepsia/complicaciones , Epilepsia/epidemiología , Convulsiones/complicaciones
18.
J Neural Eng ; 19(5)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36270501

RESUMEN

Objective.Critical slowing features (variance and autocorrelation) of long-term continuous electroencephalography (EEG) and electrocardiography (ECG) data have previously been used to forecast epileptic seizure onset. This study tested the feasibility of forecasting non-epileptic seizures using the same methods. In doing so, we examined if long-term cycles of brain and cardiac activity are present in clinical physiological recordings of psychogenic non-epileptic seizures (PNES).Approach.Retrospectively accessed ambulatory EEG and ECG data from 15 patients with non-epileptic seizures and no background of epilepsy were used for developing the forecasting system. The median period of recordings was 161 h, with a median of 7 non-epileptic seizures per patient. The phases of different cycles (5 min, 1 h, 6 h, 12 h, 24 h) of EEG and RR interval (RRI) critical slowing features were investigated. Forecasters were generated using combinations of the variance and autocorrelation of both EEG and the RRI of the ECG at each of the aforementioned cycle lengths. Optimal forecasters were selected as those with the highest area under the receiver-operator curve (AUC).Main results.It was found that PNES events occurred in the rising phases of EEG feature cycles of 12 and 24 h in duration at a rate significantly above chance. We demonstrated that the proposed forecasters achieved performance significantly better than chance in 8/15 of patients, and the mean AUC of the best forecaster across patients was 0.79.Significance.To our knowledge, this is the first study to retrospectively forecast non-epileptic seizures using both EEG and ECG data. The significance of EEG in the forecasting models suggests that cyclic EEG features of non-epileptic seizures exist. This study opens the potential of seizure forecasting beyond epilepsy, into other disorders of episodic loss of consciousness or dissociation.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Estudios Retrospectivos , Convulsiones/diagnóstico , Electroencefalografía/métodos , Epilepsia/diagnóstico , Electrocardiografía
19.
Clin Neurophysiol ; 142: 258-261, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35940975

RESUMEN

OBJECTIVE: Conventional methods used to adhere EEG electrodes are often uncomfortable. Here, we present a polymer-based water-soluble EEG adhesive that can be maintained for up to 6 days. The primary outcome measure of this study is the median electrode impedance at day 6. METHODS: Impedance measurements for 841 EEG recordings using a 21 channel 10-20 configuration were remotely logged daily for 6 days after connection. A novel electrode adhesive was used to attach EEG electrodes. Patients were instructed to maintain their electrodes on day 4. RESULTS: Median electrode impedances were significantly below 10kOhms for each day of recording, with a median value on day 6 of 4.18kOhms. Impedance values were significantly lower on day 5 than on day 4, demonstrating that the maintenance process can reduce impedance. Except for day 4-5, the median impedance increased each day. No significant difference was found on the first or final day between clinics or residences from areas of different geographic remoteness. CONCLUSIONS: EEG is able to be recorded in patients homes for 6 days with acceptable impedance and no significant effect of regionality or patients age. SIGNIFICANCE: To the best of our knowledge, this is the first report in the literature of impedance data from long-term ambulatory EEG studies.


Asunto(s)
Adhesivos , Agua , Impedancia Eléctrica , Electrodos , Electroencefalografía/métodos , Humanos , Polímeros
20.
Epilepsia ; 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35604546

RESUMEN

To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...