Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38813700

RESUMEN

Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.

2.
Cardiovasc Res ; 120(3): 318-328, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38381113

RESUMEN

AIMS: The adaptive immune response plays an important role in atherosclerosis. In response to a high-fat/high-cholesterol (HF/HC) diet, marginal zone B (MZB) cells activate an atheroprotective programme by regulating the differentiation and accumulation of 'poorly differentiated' T follicular helper (Tfh) cells. On the other hand, Tfh cells activate the germinal centre response, which promotes atherosclerosis through the production of class-switched high-affinity antibodies. We therefore investigated the direct role of Tfh cells and the role of IL18 in Tfh differentiation in atherosclerosis. METHODS AND RESULTS: We generated atherosclerotic mouse models with selective genetic deletion of Tfh cells, MZB cells, or IL18 signalling in Tfh cells. Surprisingly, mice lacking Tfh cells had increased atherosclerosis. Lack of Tfh not only reduced class-switched IgG antibodies against oxidation-specific epitopes (OSEs) but also reduced atheroprotective natural IgM-type anti-phosphorylcholine (PC) antibodies, despite no alteration of natural B1 cells. Moreover, the absence of Tfh cells was associated with an accumulation of MZB cells with substantially reduced ability to secrete antibodies. In the same manner, MZB cell deficiency in Ldlr-/- mice was associated with a significant decrease in atheroprotective IgM antibodies, including natural anti-PC IgM antibodies. In humans, we found a positive correlation between circulating MZB-like cells and anti-OSE IgM antibodies. Finally, we identified an important role for IL18 signalling in HF/HC diet-induced Tfh. CONCLUSION: Our findings reveal a previously unsuspected role of MZB cells in regulating atheroprotective 'natural' IgM antibody production in a Tfh-dependent manner, which could have important pathophysiological and therapeutic implications.


Asunto(s)
Aterosclerosis , Interleucina-18 , Humanos , Ratones , Animales , Inmunoglobulina M , Linfocitos B , Aterosclerosis/genética , Aterosclerosis/prevención & control , Colesterol , Linfocitos T Colaboradores-Inductores
3.
BMJ Open ; 14(2): e084303, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38413153

RESUMEN

INTRODUCTION: The INflammation and Small Vessel Disease (INSVD) study aims to investigate whether peripheral inflammation, immune (dys)regulation and blood-brain barrier (BBB) permeability relate to disease progression in cerebral small vessel disease (SVD). This research aims to pinpoint specific components of the immune response in SVD relating to disease progression. This could identify biomarkers of SVD progression, as well as potential therapeutic targets to inform the development and repurposing of drugs to reduce or prevent SVD, cognitive decline and vascular dementia. METHODS AND ANALYSIS: INSVD is a prospective observational multicentre cohort study in individuals with symptomatic SVD. This longitudinal study combines comprehensive immunophenotyping of the peripheral blood immune compartment with advanced neuroimaging markers of SVD and BBB permeability. The main SVD marker of interest is white matter microstructure as determined by diffusion tensor imaging, a valuable marker of disease progression owing to its sensitivity to early alterations to white matter integrity. The research is being conducted in two sites-in the UK (Cambridge) and the Netherlands (Nijmegen)-with each site recruiting 100 participants (total n=200). Participants undergo clinical and cognitive assessments, blood draws, and brain MRI at baseline and 2-year follow-up. ETHICS AND DISSEMINATION: This study received ethical approval from the local ethics boards (UK: East of England-Cambridge Central Research Ethics Committee (REC) ref: 22/EE/00141, Integrated Research Application System (IRAS) ID: 312 747. Netherlands: Medical Research Ethics Committee (MREC) Oost-Nederland, ref: 2022-13623, NL-number: NL80258.091.22). Written informed consent was obtained from all subjects before the study. Any participant-derived benefits resulting from this research, such as new insights into disease mechanisms or possible novel therapies, will be disseminated to study participants, patient groups and members of the public. TRIAL REGISTRATION NUMBER: NCT05746221.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Barrera Hematoencefálica/diagnóstico por imagen , Estudios Longitudinales , Estudios de Cohortes , Estudios Prospectivos , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Inflamación , Progresión de la Enfermedad , Estudios Observacionales como Asunto , Estudios Multicéntricos como Asunto
4.
JCI Insight ; 9(5)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329807

RESUMEN

Inappropriate immune activity is key in the pathogenesis of multiple diseases, and it is typically driven by excess inflammation and/or autoimmunity. IL-1 is often the effector owing to its powerful role in both innate and adaptive immunity, and, thus, it is tightly controlled at multiple levels. IL-1R2 antagonizes IL-1, but effects of losing this regulation are unknown. We found that IL-1R2 resolves inflammation by rapidly scavenging free IL-1. Specific IL-1R2 loss in germinal center (GC) T follicular regulatory (Tfr) cells increased the GC response after a first, but not booster, immunization, with an increase in T follicular helper (Tfh) cells, GC B cells, and antigen-specific antibodies, which was reversed upon IL-1 blockade. However, IL-1 signaling is not obligate for GC reactions, as WT and Il1r1-/- mice showed equivalent phenotypes, suggesting that GC IL-1 is normally restrained by IL-1R2. Fascinatingly, germline Il1r2-/- mice did not show this phenotype, but conditional Il1r2 deletion in adulthood recapitulated it, implying that compensation during development counteracts IL-1R2 loss. Finally, patients with ulcerative colitis or Crohn's disease had lower serum IL-1R2. All together, we show that IL-1R2 controls important aspects of innate and adaptive immunity and that IL-1R2 level may contribute to human disease propensity and/or progression.


Asunto(s)
Receptores Tipo II de Interleucina-1 , Linfocitos T Colaboradores-Inductores , Humanos , Animales , Ratones , Centro Germinal , Inflamación , Interleucina-1
5.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697134

RESUMEN

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Asunto(s)
Aterosclerosis , Arteritis de Células Gigantes , Infarto del Miocardio , Arteritis de Takayasu , Humanos , Receptores de Somatostatina , Estudios Prospectivos , Fluorodesoxiglucosa F18 , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Vasos Coronarios/patología , Aterosclerosis/diagnóstico por imagen , Radiofármacos/farmacología
6.
Sci Signal ; 15(743): eabl9169, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35857633

RESUMEN

The integrin lymphocyte function-associated antigen 1 (LFA-1) helps to coordinate the migration, adhesion, and activation of T cells through interactions with intercellular adhesion molecule 1 (ICAM-1) and ICAM-2. LFA-1 is activated during the engagement of chemokine receptors and the T cell receptor (TCR) through inside-out signaling, a process that is partially mediated by phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol 3,4,5-trisphosphate (PIP3). To evaluate potential roles of PI3K in LFA-1 activation, we designed a library of CRISPR/single guide RNAs targeting known and potential PIP3-binding proteins and screened for effects on the ability of primary mouse T cells to bind to ICAM-1. We identified multiple proteins that regulated the binding of LFA-1 to ICAM-1, including the Rap1 and Ras GTPase-activating protein RASA3. We found that RASA3 suppressed LFA-1 activation in T cells, that its expression was rapidly reduced upon T cell activation, and that its activity was inhibited by PI3K. Loss of RASA3 in T cells led to increased Rap1 activation, defective lymph node entry and egress, and impaired responses to T-dependent immunization in mice. Our results reveal a critical role for RASA3 in T cell migration, homeostasis, and function.


Asunto(s)
Antígeno-1 Asociado a Función de Linfocito , Fosfatidilinositol 3-Quinasas , Animales , Antígenos CD , Adhesión Celular/genética , Moléculas de Adhesión Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Activadoras de GTPasa , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Linfocitos T/metabolismo
7.
J Am Coll Cardiol ; 79(7): 632-647, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35177192

RESUMEN

BACKGROUND: Mature B lymphocytes alter the recovery of cardiac function after acute myocardial infarction (MI) in mice. Follicular B cells and marginal zone B (MZB) cells are spatially distinct mature B-cell populations in the spleen, and they exert specific functional properties. microRNA-21 (miR21)/hypoxia-inducible factor-α (HIF-α)-related pathways have been shown to govern B-cell functions. OBJECTIVES: The goal of this study was to unravel the distinct role of MZB cells and that of endogenous activation of miR21/HIF-α signaling in MZB cells during post-ischemic injury. METHODS: Acute MI was induced in mice by permanent ligation of the left anterior descending coronary artery. Cardiac function and remodeling were assessed by using echocardiography and immunohistochemistry. To determine the specific role of MZB cells, the study used mice with B-cell lineage-specific conditional deletion of Notch signaling, which leads to selection deficiency of MZB cells. To evaluate the role of the HIF-1α isoform, mice were generated with MZB-cell lineage-specific conditional deletion of Hif1a. RESULTS: Acute MI prompted an miR21-dependent increase in HIF-1α, particularly in splenic MZB cells. MZB cell deficiency and MZB cell-specific deletion of miR21 or Hif1a improved cardiac function after acute MI. miR21/HIF-1α signaling in MZB cells was required for Toll-like receptor dependent expression of the monocyte chemoattractant protein CCL7, leading to increased mobilization of inflammatory monocytes to the ischemic myocardium and to adverse post-ischemic cardiac remodeling. CONCLUSIONS: This work reveals a novel function for the miR21/HIF-1α pathway in splenic MZB cells with potential major implications for the modulation of cardiac function after acute MI.


Asunto(s)
Linfocitos B/metabolismo , Infarto del Miocardio/metabolismo , Bazo/metabolismo , Remodelación Ventricular/fisiología , Animales , Células Cultivadas , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Bazo/citología
8.
NEJM Evid ; 1(1): EVIDoa2100009, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319239

RESUMEN

BACKGROUND: Atherosclerosis is a chronic inflammatory disease of the artery wall. Regulatory T cells (Tregs) limit inflammation and promote tissue healing. Low doses of interleukin (IL)-2 have the potential to increase Tregs, but its use is contraindicated for patients with ischemic heart disease. METHODS: In this randomized, double-blind, placebo-controlled, dose-escalation trial, we tested low-dose subcutaneous aldesleukin (recombinant IL-2), given once daily for 5 consecutive days. In study part A, the primary end point was safety, and patients with stable ischemic heart disease were randomly assigned to receive placebo or to one of five dose groups (range, 0.3 to 3.0 × 106 IU daily). In study part B, patients with acute non-ST elevation myocardial infarction or unstable angina were randomly assigned to receive placebo or to one of two dose groups (1.5 and 2.5 × 106 IU daily). The coprimary end points were safety and the dose required to increase circulating Tregs by 75%. Single-cell RNA-sequencing of circulating immune cells was used to provide a mechanistic assessment of the effects of aldesleukin. RESULTS: Forty-four patients were randomly assigned to either study part A (n=26) or part B (n=18). In total, 3 patients withdrew before dosing, 27 received active treatment, and 14 received placebo. The majority of adverse events were mild. Two serious adverse events occurred, with one occurring after drug administration. In parts A and B, there was a dose-dependent increase in Tregs. In part B, the estimated dose to achieve a 75% increase in Tregs was 1.46 × 106 IU (95% confidence interval, 1.06 to 1.87). Single-cell RNA-sequencing demonstrated the engagement of distinct pathways and cell­cell interactions. CONCLUSIONS: In this phase 1b/2a study, low-dose IL-2 expanded Tregs without adverse events of major concern. Larger trials are needed to confirm the safety and to further evaluate the efficacy of low-dose IL-2 as an anti-inflammatory therapy for patients with ischemic heart disease. (Funded by the Medical Research Council, the British Heart Foundation, and others; ClinicalTrials.gov number, NCT03113773)


Asunto(s)
Interleucina-2 , Interleucina-2/análogos & derivados , Isquemia Miocárdica , Linfocitos T Reguladores , Humanos , Interleucina-2/administración & dosificación , Interleucina-2/uso terapéutico , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Isquemia Miocárdica/inmunología , Isquemia Miocárdica/tratamiento farmacológico , Método Doble Ciego , Masculino , Persona de Mediana Edad , Femenino , Proteínas Recombinantes
9.
J Am Coll Cardiol ; 78(11): 1127-1142, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34503682

RESUMEN

BACKGROUND: Innate lymphoid cells type 2 (ILC2s) play critical homeostatic functions in peripheral tissues. ILC2s reside in perivascular niches and limit atherosclerosis development. OBJECTIVES: ILC2s also reside in the pericardium but their role in postischemic injury is unknown. METHODS: We examined the role of ILC2 in a mouse model of myocardial infarction (MI), and compared mice with or without genetic deletion of ILC2. We determined infarct size using histology and heart function using echocardiography. We assessed cardiac ILC2 using flow cytometry and RNA sequencing. Based on these data, we devised a therapeutic strategy to activate ILC2 in mice with acute MI, using exogenous interleukin (IL)-2. We also assessed the ability of low-dose IL-2 to activate ILC2 in a double-blind randomized clinical trial of patients with acute coronary syndromes (ACS). RESULTS: We found that ILC2 levels were increased in pericardial adipose tissue after experimental MI, and genetic ablation of ILC2 impeded the recovery of heart function. RNA sequencing revealed distinct transcript signatures in ILC2, and pointed to IL-2 axis as a major upstream regulator. Treatment of T-cell-deficient mice with IL-2 (to activate ILC2) significantly improved the recovery of heart function post-MI. Administration of low-dose IL-2 to patients with ACS led to activation of circulating ILC2, with significant increase in circulating IL-5, a prototypic ILC2-derived cytokine. CONCLUSIONS: ILC2s promote cardiac healing and improve the recovery of heart function after MI in mice. Activation of ILC2 using low-dose IL-2 could be a novel therapeutic strategy to promote a reparative response after MI.


Asunto(s)
Síndrome Coronario Agudo , Interleucina-2 , Linfocitos , Infarto del Miocardio , Recuperación de la Función , Animales , Femenino , Síndrome Coronario Agudo/tratamiento farmacológico , Tejido Adiposo/inmunología , Interleucina-2/metabolismo , Interleucina-2/uso terapéutico , Linfocitos/fisiología , Ratones Endogámicos C57BL , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Recuperación de la Función/inmunología , Función Ventricular
10.
Curr Cardiol Rep ; 23(8): 99, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196824

RESUMEN

PURPOSE OF REVIEW: To examine the use of positron emission tomography (PET) for imaging post-infarct myocardial inflammation and repair. RECENT FINDINGS: Dysregulated immune responses after myocardial infarction are associated with adverse cardiac remodelling and an increased likelihood of ischaemic heart failure. PET imaging utilising novel tracers can be applied to visualise different components of the post-infarction inflammatory and repair processes. This approach could offer unique pathophysiological insights that could prove useful for the identification and risk-stratification of individuals who would ultimately benefit most from emerging immune-modulating therapies. PET imaging could also bridge the clinical translational gap as a surrogate measure of drug efficacy in early-stage clinical trials in patients with myocardial infarction. The use of hybrid PET/MR imaging, in particular, offers the additional advantage of simultaneous in vivo molecular imaging and detailed assessment of myocardial function, viability and tissue characterisation. Further research is needed to realise the true clinical translational value of PET imaging after myocardial infarction.


Asunto(s)
Fluorodesoxiglucosa F18 , Infarto del Miocardio , Humanos , Inflamación/diagnóstico por imagen , Infarto del Miocardio/diagnóstico por imagen , Miocardio , Tomografía de Emisión de Positrones
11.
Antioxidants (Basel) ; 10(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919749

RESUMEN

Abdominal aortic aneurysm (AAA) is increasing due to aging of the population and is a major cause of death among the elderly. Ultrasound screening programs are useful in early diagnosis, but aneurysm size is not always a good predictor of rupture. Our aim was to analyze the value of circulating molecules related to oxidative stress and inflammation as new biomarkers to assist the management of AAA. The markers were quantified by ELISA, and their expression in the aneurysmal wall was studied by real-time PCR and by immunostaining. Correlation analysis of the studied markers with aneurysm diameter and peak wall stress (PWS), obtained by finite element analysis, and multivariate regression analysis to assess potential confounding factors were performed. Our study shows an extensive inflammatory infiltration in the aneurysmal wall, mainly composed by T-cells, macrophages and B-cells and altered levels of reactive oxygen species (ROS), IgM, IgG, CD38, GDF15, S100A4 and CD36 in plasma and in the aneurysmal tissue of AAA patients compared with controls. Circulating levels of IgG, CD38 and GDF15 positively correlated with abdominal aortic diameter, and CD38 was correlated with PWS. Our data show that altered levels of IgG, CD38 and GDF15 have potential diagnostic value in the assessment of AAA.

12.
Arterioscler Thromb Vasc Biol ; 40(11): 2598-2604, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32907369

RESUMEN

OBJECTIVE: NR4A orphan receptors have been well studied in vascular and myeloid cells where they play important roles in the regulation of inflammation in atherosclerosis. NR4A1 (nerve growth factor IB) is among the most highly induced transcription factors in B cells following BCR (B-cell receptor) stimulation. Given that B cells substantially contribute to the development of atherosclerosis, we examined whether NR4A1 regulates B-cell function during atherogenesis. Approach and Results: We found that feeding Ldlr-/- mice a Western diet substantially increased Nr4a1 expression in marginal zone B (MZB) cells compared with follicular B cells. We then generated Ldlr-/- mice with complete B- or specific MZB-cell deletion of Nr4a1. Complete B-cell deletion of Nr4a1 led to increased atherosclerosis, which was accompanied by increased T follicular helper cell-germinal center axis response, as well as increased serum total cholesterol and triglycerides levels. Interestingly, specific MZB-cell deletion of Nr4a1 increased atherosclerosis in association with an increased T follicular helper-germinal center response but without any impact on serum cholesterol or triglyceride levels. Nr4a1-/- MZB cells showed decreased PDL1 (programmed death ligand-1) expression, which may have contributed to the enhanced T follicular helper response. CONCLUSIONS: Our findings reveal a previously unsuspected role for NR4A1 in the atheroprotective role of MZB cells.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Linfocitos B/metabolismo , Eliminación de Gen , Tejido Linfoide/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Animales , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Linfocitos B/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Tejido Linfoide/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal
14.
Arterioscler Thromb Vasc Biol ; 39(7): 1379-1389, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31092015

RESUMEN

Objective- Investigate the impact of modulating B cell FcγRIIb (Fcγ receptor IIb) expression on atherosclerosis. Approach and Results- Western diet-induced atherosclerosis was assessed in Ldlr-/- or Apoe-/- mice with B cell-specific overexpression of FcγRIIb or with an FcγRIIb promoter mutation that alters FcγRIIb expression in germinal center (GC) B cells. In males, overexpression of FcγRIIb on B cells severely reduced activated, class switched B cell responses, as indicated by reductions in GC B cells, plasma cells, and serum IgG but not IgM antibodies. Male mice overexpressing FcγRIIb developed less atherosclerosis, suggesting a pathogenic role for GC B cell IgG responses. In support of this hypothesis, male mice with a promoter polymorphism-driven reduction in FcγRIIb on GC B cells but not plasma cells have a converse phenotype of enhanced GC responses and IgG2c antibodies and enhanced atherosclerosis. IgG2c significantly enhanced TNF (tumor necrosis factor) secretion by CD11b+ CD11c+ cells expressing the high-affinity receptor FcγRIV. In females, overexpression of FcγRIIb on B cells not only reduced GC B cell responses but also substantially reduced B-1 cells and IgM antibodies, which translated into acceleration of atherosclerosis. Promoter-driven reduction in FcγRIIb did not alter GC B cell responses in females and, therefore, had no impact on atherosclerosis. Conclusions- B cell FcγRIIb differentially alters proatherogenic adaptive GC B cell and atheroprotective innate B-1 responses in male and female mice fed a western diet. Our results highlight the importance of a better understanding and ability to selectively target B cell responses in future immunotherapeutic approaches against human cardiovascular disease. Visual Overview- An online visual overview is available for this article.


Asunto(s)
Aterosclerosis/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Receptores de IgG/fisiología , Animales , Apolipoproteínas E/fisiología , Femenino , Inmunidad Innata , Inmunoglobulina M/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/biosíntesis
15.
Eur J Pharmacol ; 816: 76-81, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-28882560

RESUMEN

Atherosclerosis is a leading cause of death worldwide. It is a complex chronic inflammatory disease involving interactions between vascular, circulating and immune cells. B cells play an important role in chronic inflammation producing antibodies and regulating T and natural killer (NKT) cell activation. The role of B cells in atherosclerosis is complex, with atherogenic and protective roles assigned for distinct B cell subsets. Drugs that deplete B cells or modulate their functions are now used in the treatment of various autoimmune diseases in humans. Here, we briefly review the roles of B cell subsets in atherogenesis, and emphasize the potential impact of B cell targeted therapies on the cardiovascular risk of treated patients. Developing more B cell subset-specific therapies would lead to more effective treatments with enhanced safety profile.


Asunto(s)
Aterosclerosis/inmunología , Linfocitos B , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Humanos , Investigación Biomédica Traslacional
16.
Circ Res ; 121(3): 270-281, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28620068

RESUMEN

RATIONALE: Diverse B cell responses and functions may be involved in atherosclerosis. Protective antibody responses, such as those against oxidized lipid epitopes, are thought to mainly derive from T cell-independent innate B cell subsets. In contrast, both pathogenic and protective roles have been associated with T cell-dependent antibodies, and their importance in both humans and mouse models is still unclear. OBJECTIVE: To specifically target antibody production by plasma cells and determine the impact on atherosclerotic plaque development in mice with and without CD4+ T cells. METHODS AND RESULTS: We combined a model of specific antibody deficiency, B cell-specific CD79a-Cre x XBP1 (X-box binding protein-1) floxed mice (XBP1-conditional knockout), with antibody-mediated depletion of CD4+ T cells. Ldlr knockout mice transplanted with XBP1-conditional knockout (or wild-type control littermate) bone marrow were fed western diet for 8 weeks with or without anti-CD4 depletion. All groups had similar levels of serum cholesterol. In Ldlr/XBP1-conditional knockout mice, serum levels of IgG, IgE, and IgM were significantly attenuated, and local antibody deposition in atherosclerotic plaque was absent. Antibody deficiency significantly accelerated atherosclerosis at both the aortic root and aortic arch. T cell and monocyte responses were not modulated, but necrotic core size was greater, even when adjusting for plaque size, and collagen deposition significantly lower. Anti-CD4 depletion in Ldlr/wild-type mice led to a decrease of serum IgG1 and IgG2c but not IgG3, as well as decreased IgM, associated with increased atherosclerosis and necrotic cores, and a decrease in plaque collagen. The combination of antibody deficiency and anti-CD4 depletion has no additive effects on aortic root atherosclerosis. CONCLUSIONS: The endogenous T cell-dependent humoral response can be protective. This has important implications for novel vaccine strategies for atherosclerosis and in understanding the impacts of immunotherapies used in patients at high risk for cardiovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Linfocitos B/metabolismo , Linfocitos T/metabolismo , Proteína 1 de Unión a la X-Box/deficiencia , Animales , Aterosclerosis/inmunología , Aterosclerosis/patología , Linfocitos B/inmunología , Inmunidad Humoral/fisiología , Masculino , Ratones , Ratones Noqueados , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Linfocitos T/inmunología , Proteína 1 de Unión a la X-Box/inmunología
17.
Nat Commun ; 8: 15781, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28589929

RESUMEN

Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet.


Asunto(s)
Aterosclerosis/patología , Linfocitos/patología , Tejido Adiposo Blanco/patología , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/etiología , Trasplante de Médula Ósea , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Linfocitos/metabolismo , Ratones Noqueados para ApoE , Ratones Mutantes , Placa Aterosclerótica/patología
18.
Nat Med ; 23(5): 601-610, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28414328

RESUMEN

Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH-germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.


Asunto(s)
Linfocitos B/inmunología , Antígeno B7-H1/inmunología , Colesterol en la Dieta/inmunología , Dieta , Centro Germinal/inmunología , Tejido Linfoide/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/inmunología , Animales , Aterosclerosis/inmunología , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Colesterol/sangre , HDL-Colesterol/sangre , Citometría de Flujo , Homeostasis , Humanos , Recuento de Linfocitos , Tejido Linfoide/citología , Ratones , Placa Aterosclerótica/sangre , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/citología , Bazo/inmunología
19.
Cardiovasc Res ; 112(2): 568-580, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27496872

RESUMEN

AIM: To determine the role of NOTCH during the arterial injury response and the subsequent chronic arterial-wall inflammation underlying atherosclerosis. METHODS AND RESULTS: We have generated a mouse model of endothelial-specific (Cdh5-driven) depletion of the Notch effector recombination signal binding protein for immunoglobulin kappa J region (RBPJ) [(ApoE-/-); homozygous RBPJk conditional mice (RBPJflox/flox); Cadherin 5-CreERT, tamoxifen inducible driver mice (Cdh5-CreERT)]. Endothelial-specific deletion of RBPJ or systemic deletion of Notch1 in athero-susceptible ApoE-/- mice fed a high-cholesterol diet for 6 weeks resulted in reduced atherosclerosis in the aortic arch and sinus. Intravital microscopy revealed decreased leucocyte rolling on the endothelium of ApoE-/-; RBPJflox/flox; Cdh5-CreERT mice, correlating with a lowered content of leucocytes and macrophages in the vascular wall. Transcriptome analysis revealed down-regulation of proinflammatory and endothelial activation pathways in atherosclerotic tissue of RBPJ-mutant mice. During normal Notch activation, Jagged1 signalling up-regulation in endothelial cells promotes nuclear translocation of the Notch1 intracellular domain (N1ICD) and its physical interaction with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This N1ICD-NF-κB interaction is required for reciprocal transactivation of target genes, including vascular cell adhesion molecule-1. CONCLUSIONS: Notch signalling pathway inactivation decreases leucocyte rolling, thereby preventing endothelial dysfunction and vascular inflammation. Attenuation of Notch signalling might provide a treatment strategy for atherosclerosis.

20.
Expert Rev Clin Immunol ; 12(11): 1217-1237, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27253721

RESUMEN

INTRODUCTION: A large body of evidence supports the inflammatory hypothesis of atherosclerosis, and both innate and adaptive immune responses play important roles in all disease stages. Areas covered: Here, we review our understanding of the role of the immune response in atherosclerosis, focusing on the pathways currently amenable to therapeutic modulation. We also discuss the advantages or undesirable effects that may be foreseen from targeting the immune response in patients at high cardiovascular risk, suggesting new avenues for research. Expert commentary: There is an extraordinary opportunity to directly test the inflammatory hypothesis of atherosclerosis in the clinic using currently available therapeutics. However, a more balanced interpretation of the experimental and translational data is needed, which may help address and identify in more detail the appropriate settings where an immune pathway can be targeted with minimal risk.


Asunto(s)
Inmunidad Adaptativa , Aterosclerosis/inmunología , Inmunidad Innata , Inflamación , Aterosclerosis/terapia , Humanos , Inflamación/inmunología , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA