Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21051, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030880

RESUMEN

With its distinctive material properties, fungal mycelium has emerged as an innovative material with a diverse array of applications across various industries. This study focuses on how the growth strategies of wood fungi adapt to nutrient availability. The effect of malt extract concentration in the growth medium on radial growth kinetics, morphology, mycelium network connectivity, and mechanical characteristics of mycelium from two Ganoderma species were investigated. While an evident pattern of radial growth rate enhancement with malt concentrations was not apparent, there was a discernible trend towards denser mycelium network characteristics as revealed by spectrophotometry. Increased malt extract contents corresponded to elevated optical density measurements and were visually confirmed by denser mycelium networks in photographic images. Investigating the mechanical characteristics of mycelium cultivated on varying solid substrate concentrations, the Young's modulus exhibited a substantial difference between mycelium grown on 5 wt% malt substrate and samples cultivated on 2 wt% and 0.4 wt% malt substrates. The obtained results represent a new understanding of how malt availability influences mycelial growth of two Ganoderma species, a crucial insight for potentially refining mycelium cultivation across diverse applications, including meat alternatives, smart building materials, and alternative leather.


Asunto(s)
Ganoderma , Medios de Cultivo/química , Hongos , Micelio , Extractos Vegetales/análisis
2.
Colloids Surf B Biointerfaces ; 217: 112595, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35665640

RESUMEN

Understanding globular protein adsorption to fluid interfaces, their interfacial assembly, and structural reorganization is not only important in the food industry, but also in medicine and biology. However, due to their intrinsic structural complexity, a unifying description of these phenomena remains elusive. Herein, we propose N-isopropylacrylamide microgels as a promising model system to isolate different aspects of adsorption, dilatational rheology, and interfacial structure at fluid interfaces with a wide range of interfacial tensions, and compare the results with the ones of globular proteins. In particular, the steady-state spontaneously-adsorbed interfacial pressure of microgels correlates closely to that of globular proteins, following the same power-law behavior as a function of the initial surface tension. However, the dilatational rheology of spontaneously-adsorbed microgel layers is dominated by the presence of a loosely packed polymer corona spread at the interface, and it thus exhibits a similar mechanical response as flexible, unstructured proteins, which are significantly weaker than globular ones. Finally, structurally, microgels reveal a similar spreading and flattening upon adsorption as globular proteins do. In conclusion, microgels offer interesting opportunities to act as powerful model systems to unravel the complex behavior of proteins at fluid interfaces.


Asunto(s)
Microgeles , Adsorción , Reología , Propiedades de Superficie , Agua/química
3.
J Colloid Interface Sci ; 608(Pt 3): 2584-2592, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774321

RESUMEN

Microgels are soft colloidal particles constituted by cross-linked polymer networks with a high potential for applications. In particular, after adsorption at a fluid interface, interfacial tension provides two-dimensional (2D) confinement for microgel monolayers and drives the reconfiguration of the particles, enabling their deployment in foam and emulsion stabilization and in surface patterning for lithography, sensing and optical materials. However, most studies focus on systems of fluids with a high interfacial tension, e.g. alkanes/ or air/water interfaces, which imparts similar properties to the assembled monolayers. Here, instead, we compare two organic fluid phases, hexane and methyl tert-butyl ether, which have markedly different interfacial tension (γ) values with water and thus tune the deformation of adsorbed microgels. We rationalize how γ controls the single-particle morphology, which consequently modulates the structural and mechanical response of the monolayers at varying interfacial compression. Specifically, when γ is low, the microgels are less deformed within the interface plane and their polymer networks can rearrange more easily upon lateral compression, leading to softer monolayers. Selecting interfaces with different surface energy offers an additional control to customize the 2D assembly of soft particles, from the fine-tuning of particle size and interparticle spacing to the tailoring of mechanical properties.


Asunto(s)
Microgeles , Adsorción , Emulsiones , Propiedades de Superficie , Tensión Superficial
4.
Soft Matter ; 17(6): 1692-1700, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33393584

RESUMEN

The formation of viscoelastic networks at fluid interfaces by globular proteins is essential in many industries, scientific disciplines, and biological processes. However, the effect of the oil phase on the structural transitions of proteins, network formation, and layer strength at fluid interfaces has received little attention. Herein, we present a comprehensive study on the effect of oil polarity on globular protein networks. The formation dynamics and mechanical properties of the interfacial networks of three different globular proteins (lysozyme, ß-lactoglobulin, and bovine serum albumin) were studied with interfacial shear and dilatational rheometry. Furthermore, the degree of protein unfolding at the interfaces was evaluated by subsequent injection of disulfide bonds reducing dithiothreitol. Finally, we measured the interfacial layer thickness and protein immersion into the oil phase with neutron reflectometry. We found that oil polarity significantly affects the network formation, the degree of interfacial protein unfolding, interfacial protein location, and the resulting network strength. These results allow predicting emulsion stabilization of proteins, tailoring interfacial layers with desired mechanical properties, and retaining the protein structure and functionality upon adsorption.


Asunto(s)
Lactoglobulinas , Agua , Adsorción , Muramidasa , Albúmina Sérica Bovina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA