Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1124011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006237

RESUMEN

Introduction: Polymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known. Methods & results: We investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function. Conclusion: We conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.


Asunto(s)
PPAR alfa , Sepsis , Ratones , Animales , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Hepatocitos/metabolismo , Sepsis/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Glucosa/metabolismo , Luciferasas , Ratones Noqueados
2.
EMBO Rep ; 23(1): e53083, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34699114

RESUMEN

Here, we investigate the impact of hypoxia on the hepatic response of glucocorticoid receptor (GR) to dexamethasone (DEX) in mice via RNA-sequencing. Hypoxia causes three types of reprogramming of GR: (i) much weaker induction of classical GR-responsive genes by DEX in hypoxia, (ii) a number of genes is induced by DEX specifically in hypoxia, and (iii) hypoxia induces a group of genes via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Transcriptional profiles are reflected by changed GR DNA-binding as measured by ChIP sequencing. The HPA axis is induced by hypothalamic HIF1α and HIF2α activation and leads to GR-dependent lipolysis and ketogenesis. Acute inflammation, induced by lipopolysaccharide, is prevented by DEX in normoxia but not during hypoxia, and this is attributed to HPA axis activation by hypoxia. We unfold new physiological pathways that have consequences for patients suffering from GC resistance.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Animales , Dexametasona/metabolismo , Dexametasona/farmacología , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Cell Metab ; 33(9): 1763-1776.e5, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34302744

RESUMEN

Sepsis is a potentially lethal syndrome resulting from a maladaptive response to infection. Upon infection, glucocorticoids are produced as a part of the compensatory response to tolerate sepsis. This tolerance is, however, mitigated in sepsis due to a quickly induced glucocorticoid resistance at the level of the glucocorticoid receptor. Here, we show that defects in the glucocorticoid receptor signaling pathway aggravate sepsis pathophysiology by lowering lactate clearance and sensitizing mice to lactate-induced toxicity. The latter is exerted via an uncontrolled production of vascular endothelial growth factor, resulting in vascular leakage and collapse with severe hypotension, organ damage, and death, all being typical features of a lethal form of sepsis. In conclusion, sepsis leads to glucocorticoid receptor failure and hyperlactatemia, which collectively leads to a lethal vascular collapse.


Asunto(s)
Hiperlactatemia , Sepsis , Animales , Glucocorticoides , Ácido Láctico , Ratones , Receptores de Glucocorticoides/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA