Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1268924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927601

RESUMEN

Background: Medicinal plants have traditionally been used as remedies against malaria. The present review attempted to compile data on scientific research evidence on antimalarial medicinal plants screened at Kenya Medical Research Institute (KEMRI), Center for Traditional Medicine and Drug (CTMDR) Research from January 2003 to December 2021. Methods: A systematic review was conducted using a predefined protocol based on PRISMA. Search was performed in Google Scholar and PubMed. One hundred and eight journal articles were identified 37 of which published on antimalarial/antiplasmodial work. Thirty journal articles with at least one author from KEMRI-CTMDR and accessible in full were selected for analysis. Relevant data was captured in MS Excel format and descriptive statistics, percentages and tables used to summarize the findings. Results: Assessment of individual plant species was considered as an independent study resulting in 1170 antiplasmodial/antimalarial tests done from 197 plant species. One hundred and fifty plant species were screened in vitro, one in vivo and 46 were both in vivo and in vitro. Three hundred and forty-four of tests reported good activity (IC50 < 10 µg/mL or parasite suppression rate of ≥50%), 414 moderate activity (IC50 values of 10-49 µg/mL or parasite suppression rate of 30%-49%) and 412 were reports of inactivity (IC50 ˃ 50 µg/mL or parasite suppression rate of <30%). Fuerstia africana and Ludwigia erecta were reported to have the highest activities, with IC50 < 1 µg/mL against Plasmodium falciparum D6 strain and chemosuppression in mice at an oral dose of 100 mg/kg, was reported as 61.9% and 65.3% respectively. Fifty five antimalarial/antiplasmodial active compounds isolated from eight plant species were reported with resinone (39) having the best activity (IC50 < 1 µg/mL). Conclusion: Though 344 of tests reported promising antimalarial activity, it was noted that there was limited evaluation of these plants in animal models, with only 9.0% (105/1170) studies and no clinical trials. This highlights an important research gap emphasizing the need for drug development studies that aim to progress study findings from preclinical to clinical studies. There is still need for extensive research on promising plant species aimed at developing new plant based antimalarial drugs.

2.
BMC Public Health ; 21(1): 856, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941135

RESUMEN

BACKGROUND: Vector control is an essential component in prevention and control of malaria in malaria endemic areas. Insecticide treated nets is one of the standard tools recommended for malaria vector control. The objective of the study was to determine physical integrity and insecticidal potency of long-lasting insecticidal nets (LLINs) used in control of malaria vector in Kirinyaga County, Kenya. METHOD: The study targeted households in an area which had received LLINs during mass net distribution in 2016 from Ministry of Health. A total of 420 households were sampled using systematic sampling method, where the household heads consented to participate in the study. A semi-structured questionnaire was administered to assess care and use while physical examination was used to determine integrity. Chemical concentration was determined by gas chromatography mass spectroscopy (GC-MS). Data analysis was done using Statistical Package for Social Sciences (SPSS) version 19. RESULTS: After 18 months of use, 96.9% (95% CI: 95.2-98.6%) of the distributed nets were still available. Regarding net utilization, 94.1% of household heads reported sleeping under an LLIN the previous night. After physical examination, 49.9% (95% CI: 43-52.8%) of the bed nets had at least one hole. The median number of holes of any size was 2[interquartile range (IQR) 1-4], and most holes were located on the lower part of the nets, [median 3 (IQR 2-5)]. Only 15% of the nets with holes had been repaired. The median concentration for α-cypermethrin was 7.15 mg/m2 (IQR 4.25-15.31) and 0.00 mg/g (IQR 0.00-1.99) for permethrin. Based on pHI, Chi-square test varied significantly with the manufacturer (X (6, N = 389) = 29.14, p = 0.04). There was no significant difference between nets with different number of washes (X2(2) = 4.55, p = 0.103). CONCLUSION: More than three-quarters of the nets supplied had survived and insecticidal potency was adequate in vector control. Standard procedure for field evaluation of surface insecticidal content available to a mosquito after landing on a net to rest is recommended.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Animales , Humanos , Kenia , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...