Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-38152060

RESUMEN

We have recently described a novel role for the conserved centromeric/kinetochore protein and cohesin protector, Shugoshin, in cilia of C. elegans. Worms are unusual in that the sole Shugoshin protein ( SGO-1 ) is dispensable for chromosome segregation but required for cilia function in fully differentiated sensory neurons. Depletion of sgo-1 leads to an array of sensory defects observed in other cilia mutants with a compromised diffusion barrier. Accordingly, SGO-1 loads to the base of cilia in sensory neurons and can be observed occupying the transition zone, the critical ciliary domain that regulates trafficking in and out of ciliary compartments. Here we start to address a potential conserved role in cilia for vertebrate Shugoshin by asking whether human Shugoshin can: (1) localize to cilia and (2) rescue defects due to Shugoshin depletion in C. elegans . Our preliminary results suggest that human Shugoshin is detectable in the cilia base but show limited functional conservation when expressed in C. elegans sensory neurons.

2.
Methods Mol Biol ; 2558: 123-141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36169860

RESUMEN

The expression of the two isoforms of monoamine oxidase (MAO A and MAO B) is often inferred from proxy measures such as mRNA transcript levels or catalytic activity. Yet the literature is clear that the proportionality of protein, mRNA, and activity does not guarantee that any of these measures can be used as a proxy for any of the others. Here we provide a protocol for the detection of MAO proteins in cell lysates that can be adapted readily to tissue preparations. Given that MAOs influence many physiological and pathological processes, we feel it is essential to include measures of protein expression when exploring genetic regulation or catalytic properties of these important enzymes.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Western Blotting , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero
3.
Methods Mol Biol ; 2558: 143-161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36169861

RESUMEN

The influence of a protein is not determined exclusively by its level of expression, but also by its localization within the cell. The literature often refers to the enzyme monoamine oxidase (MAO) as a mitochondrial enzyme, yet there is evidence that mitochondria-independent pools of MAO exist. These pools of MAO could exert distinct influences across physiological as well as pathological phenotypes. Fluorescence microscopy is a powerful tool for spatially resolving target proteins in cell and tissue preparations. This can rely on an antibody-based probe that targets the endogenous protein, e.g., immunofluorescence. In the event that antibodies might not be readily available or if one is interested in characterizing a variant of the wild-type protein, then a recombinant protein with a fluorescent fusion "tag" is preferred. We now describe a protocol for the detection of endogenous MAO using indirect immunofluorescence and a version of the protocol with minor modification for detecting (green) fluorescent protein-tagged MAOs. One observation we can highlight using these easily adaptable approaches is that MAO A and MAO B do not follow similar patterns of distribution throughout the cell, suggesting potential expression of MAO A and MAO B on distinct pools of mitochondria. Furthermore, distinct subcellular compartmentalization is suggested by the fact that a pool of MAO A, but not MAO B, is associated with certain lysosomal compartments. However, directed and quantitative studies will be required before any definitive statement can be made on these intriguing possibilities.


Asunto(s)
Mitocondrias , Monoaminooxidasa , Técnica del Anticuerpo Fluorescente , Mitocondrias/metabolismo , Monoaminooxidasa/metabolismo , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado
4.
Sci Rep ; 11(1): 431, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432101

RESUMEN

The pool of ß-Amyloid (Aß) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for Aß peptides. We examined how a naturally occurring variant, e.g. Aß(1-38), interacts with the AD-related variant, Aß(1-42), and the predominant physiological variant, Aß(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that Aß(1-38) interacts differently with Aß(1-40) and Aß(1-42) and, in general, Aß(1-38) interferes with the conversion of Aß(1-42) to a ß-sheet-rich aggregate. Functionally, Aß(1-38) reverses the negative impact of Aß(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an Aß(1-42) phenotype in Caenorhabditis elegans. Aß(1-38) also reverses any loss of MTT conversion induced by Aß(1-40) and Aß(1-42) in HT-22 hippocampal neurons and APOE ε4-positive human fibroblasts, although the combination of Aß(1-38) and Aß(1-42) inhibits MTT conversion in APOE ε4-negative fibroblasts. A greater ratio of soluble Aß(1-42)/Aß(1-38) [and Aß(1-42)/Aß(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that Aß(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant Aß(1-42).


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/efectos adversos , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/farmacología , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans , Células Cultivadas , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo
5.
Front Cardiovasc Med ; 6: 129, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552273

RESUMEN

Post-menopausal women with heart failure (HF) frequently exhibit cardiogenic dementia. Using a pre-clinical swine model of post-menopausal HF, we recently demonstrated that experimental menopause (ovariectomy; OVX) and HF (6-month cardiac pressure overload/aortic banding; AB) independently altered cerebral vasomotor control and together impaired cognitive function. The purpose of this study was to examine the prefrontal cortex and hippocampus tissues from these animals to assess whether OVX and HF are associated with neurologic alterations that may contribute to cardiogenic dementia. We hypothesized that OVX and HF would independently alter neuronal cell signaling in swine with post-menopausal cardiogenic dementia. Immunoblot analyses revealed OVX was associated with reduced estrogen receptor-α in both brain regions and HF tended to exacerbate OVX-induced deficits in the hippocampus. Further, OVX was associated with a reduction in the ratio of phosphorylated:total Akt and ERK in the hippocampus as well as decreased total Akt and synaptophysin in the prefrontal cortex. In contrast, HF was associated with a trend toward reduced phosphorylated:total ERK in the prefrontal cortex. In addition, HF was associated with decreased ß-amyloid (1-38) in the prefrontal cortex and increased ß-amyloid (1-38) in the hippocampus. Regional brain lipid analysis revealed OVX tended to increase total, saturated, and monounsaturated fatty acid content in the prefrontal cortex, with the greatest magnitude of change occurring in the AB-OVX group. The data from this study suggest that OVX and HF are independently associated with regional-specific neurologic changes in the brain that contribute to the cardiogenic dementia profile in this model. This pre-clinical swine model may be a useful tool for better understanding post-menopausal cardiogenic dementia pathology and developing novel therapies.

6.
Bioorg Chem ; 92: 103194, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31493706

RESUMEN

Cathepsin B plays key roles in tumor progression with its overexpression being associated with invasive and metastatic phenotypes and is a primary target of protease activated antibody-directed prodrug therapy. It therefore represents a potential therapeutic and diagnostic target and effort has been made to develop fluorescent probes to report on Cathepsin B activity in cells and animal models of cancer. We have designed, synthesized, and thoroughly evaluated four novel "turn on" probes that employ a lysosomotropic dansylcadaverine dye to report on Cathepsin B activity. Enzyme activity assays using a recombinant human enzyme and cancer cell lysates coupled with confocal microscopy experiments demonstrated that one of the probes, derivatized with the self-immolative prodrug linker p-aminobenzyl alcohol, can selectively report on Cathepsin B in biological samples including live cells.


Asunto(s)
Cadaverina/análogos & derivados , Catepsina B/análisis , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Neoplasias/diagnóstico por imagen , Compuestos de Aminobifenilo/química , Cadaverina/síntesis química , Cadaverina/metabolismo , Catepsina B/metabolismo , Catepsina L/análisis , Catepsina L/metabolismo , Línea Celular Tumoral , Humanos , Hidrólisis , Cinética , Microscopía Confocal , Estructura Molecular , Imagen Óptica , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
7.
Biochem Biophys Res Commun ; 511(2): 454-459, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30803762

RESUMEN

Biological sex exerts distinct influences on brain levels of the ß-amyloid (Aß) peptide in both clinical depression and Alzheimer disease (AD), yet studies in animal models focus primarily on males. We examined behavioral 'despair'/depression (using the tail-suspension test) and memory (using the novel object recognition task) in J20 (hAPPSwe/Ind) mice. Three month-old male (but not female) J20 mice exhibited less despair-like behavior, but more evidence of cognitive deficits. In young J20 mice, only soluble Aß peptides -primarily Aß(1-40)- were detected. There was no evidence of an effect on despair-like behavior in the six month-old J20 mice, although cognitive deficits were now evident in both sexes, and coincided with a greater proportion of the neurotoxic Aß(1-42) species (in soluble as well as insoluble fractions). This age-dependent shift in Aß peptide profile coincided with reduced expression of glycosylated species of ADAM-10 (α-secretase) and BACE1 (ß-secretase), and an increased co-immunoprecipitation of presenilin-1 with nicastrin (components of the γ-secretase complex). Sex-dependent changes in depression-related monoaminergic, e.g. serotonin and dopamine (but not noradrenaline), systems were evident already in young J20 mice. It is critical to acknowledge that sex-dependent APP-related phenotypes might differentially influence modifiable depression-related monoaminergic signalling at some of the earliest pathological stages of clinical AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Disfunción Cognitiva/patología , Depresión/patología , Fragmentos de Péptidos/análisis , Envejecimiento , Enfermedad de Alzheimer/complicaciones , Animales , Encéfalo/patología , Disfunción Cognitiva/complicaciones , Depresión/complicaciones , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos
8.
Can J Psychiatry ; 64(1): 18-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29685068

RESUMEN

The focus on the ß-amyloid (Aß) peptide in clinical Alzheimer disease (AD) as well as in animal models of AD has perhaps biased our understanding of what contributes to the heterogeneity in disease onset and progression. Part of this heterogeneity could reflect the various neuropsychiatric risk factors that present with common symptomatology and can predispose the brain to AD-like changes. One such risk factor is depression. Animal models, particularly mouse models carrying variants of AD-related gene(s), many of which lead to an accumulation of Aß, suggest that a fundamental shift in depression-related monoaminergic systems (including serotonin and noradrenaline) is a strong indicator of the altered cellular function associated with the earlier(est) stages of AD-related pathology. These changes in monoaminergic neurochemistry could provide for relevant targets for intervention in clinical AD and/or could support a polypharmacy strategy, which might include the targeting of Aß, in vulnerable populations. Future studies must also include female mice as well as male mice in animal model studies on the relationship between depression and AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Depresión/complicaciones , Modelos Animales de Enfermedad , Animales
9.
Front Neurosci ; 12: 545, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30147642

RESUMEN

The serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) is thought to alter 5-HT signaling and contribute to behavioral and cognitive phenotypes in depression as well as Alzheimer disease (AD). We explored how well the short (S) and long (L) alleles of the 5-HTTLPR align with serotoninergic indices in 60 autopsied cortical samples from early-onset AD/EOAD and late-onset AD/LOAD donors, and age- and sex-matched controls. Stratifying data by either diagnosis-by-genotype or by sex-by-genotype revealed that the donor's 5-HTTLPR genotype, i.e., L/L, S/L, or S/S, did not affect 5-HTT mRNA or protein expression. However, the glycosylation of 5-HTT was significantly higher in control female (vs. male) samples and tended to decrease in female EOAD/LOAD samples, but remained unaltered in male LOAD samples. Glycosylated forms of the vesicular monoamine transporter (VMAT2) were lower in both male and female AD samples, while a sex-by-genotype stratification revealed a loss of VMAT2 glycosylation specifically in females with an L/L genotype. VMAT2 and 5-HTT glycosylation were correlated in male samples and inversely correlated in female samples in both stratification models. The S/S genotype aligned with lower levels of 5-HT turnover in females (but not males) and with an increased glycosylation of the post-synaptic 5-HT2C receptor. Interestingly, the changes in presynaptic glycosylation were evident primarily in female carriers of the APOE ε4 risk factor for AD. Our data do not support an association between 5-HTTLPR genotype and 5-HTT expression, but they do reveal a non-canonical association of 5-HTTLPR genotype with sex-dependent glycosylation changes in pre- and post-synaptic markers of serotoninergic neurons. These patterns of change suggest adaptive responses in 5-HT signaling and could certainly be contributing to the female prevalence in risk for either depression or AD.

10.
Front Neurosci ; 12: 419, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997470

RESUMEN

Monoamine oxidase-A (MAO-A) and MAO-B have both been implicated in the pathology of Alzheimer disease (AD). We examined 60 autopsied control and AD donor brain samples to determine how well MAO function aligned with two major risk factors for AD, namely sex and APOE ε4 status. MAO-A activity was increased in AD cortical, but not hippocampal, samples. In contrast, MAO-B activity was increased in both regions (with a strong input from female donors) whether sample means were compared based on: (a) diagnosis alone; (b) diagnosis-by-APOE ε4 status (i.e., carriers vs. non-carriers of the ε4 allele); or (c) APOE ε4 status alone (i.e., ignoring 'diagnosis' as a variable). Sample means strictly based on the donor's sex did not reveal any difference in either MAO-A or MAO-B activity. Unexpectedly, we found that cortical MAO-A and MAO-B activities were highly correlated in both males and females (if focussing strictly on the donor's sex), while in the hippocampus, any correlation was lost in female samples. Stratifying for sex-by-APOE ε4 status revealed a strong correlation between cortical MAO-A and MAO-B activities in both non-carriers and carriers of the allele, but any correlation in hippocampal samples was lost in carriers of the allele. A diagnosis of AD disrupted the correlation between MAO-A and MAO-B activities in the hippocampus, but not the cortex. We observed a novel region-dependent co-regulation of MAO-A and MAO-B mRNAs (but not proteins), while a lack of correlation between MAO activities and the respective proteins corroborated previous reports. Overexpression of human APOE4 increased MAO activity (but not mRNA/protein) in C6 and in HT-22 cell cultures. We identified a novel co-regulation of MAO-A and MAO-B activities that is spared from any influence of risk factors for AD or AD itself in the cortex, but vulnerable to these same factors in the hippocampus. Sex- and region-dependent abilities to buffer influences on brain MAO activities could have significant bearing on ambiguous outcomes when monoaminergic systems are targeted in clinical populations.

11.
Neuroscience ; 373: 20-36, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29331531

RESUMEN

The APOE ε4 allele was originally reported to contribute to risk of Alzheimer's disease (AD) in women, yet male and female AD patient-derived data are routinely pooled. Histopathological hallmarks of AD include neurofibrillary tangles centered on hyperphosphorylated Tau and plaques composed of the ß-amyloid (Aß) peptide that is derived by sequential secretase-mediated cleavage of the Amyloid Protein Precursor (APP). We chose to examine profiles of Aß(1-40), Aß(1-42), and N-truncated (i.e., p3-related) fragments in the plaque-associated fraction of autopsied cortical and corresponding hippocampal samples from donors with a diagnosis of early-onset (EOAD) and late-onset (LOAD) AD. Levels of Aß(1-40), Aß(1-42), and the p3 fragment-enriched pool were increased in EOAD and LOAD samples, and correlated well within -but not between- regions. Counterintuitively, these increases were similar regardless of the AD donor's APOE ε4 status. Focusing on the donor's sex and APOE ε4 status as nominal variables (i.e., omitting diagnosis from the stratification) revealed that increases in Aß peptides were specific to female carriers of the ε4 allele and correlated with the proportional expression of BACE1/ß-secretase and ADAM10/α-secretase in the cortex and with nicastrin (γ-secretase) expression in the hippocampus. These data preliminarily support the possibility that AD follows distinct amyloidogenic processes in males and females, and that the APOE ε4 allele exerts a major influence on the disease process, particularly in women. This knowledge could significantly impact the (re)interpretation of unsuccessful outcomes of clinical interventions targeting either Aß peptides directly or the secretases implicated in APP processing.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Encéfalo/metabolismo , Caracteres Sexuales , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunoprecipitación , Masculino , Persona de Mediana Edad , Factores de Riesgo
12.
Cell Signal ; 26(12): 2621-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25152370

RESUMEN

Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depression as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although the mechanism involved remains ambiguous. For example, MAO-A mRNA is repressed across cancers, yet MAO-A protein and levels of serotonin, a substrate of MAO-A implicated in depression, are paradoxically increased in malignancies, including breast cancer. The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial, oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231 cell line. CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-independent growth, and increased invasiveness and active migration of MDA-MB-231 cells. CLG induced the expression of the mesenchymal marker vimentin in MCF-7 cells, but not in MDA-MB-231 cells. In contrast, CLG induced the epithelial protein marker E-cadherin in both cell lines, with a more robust effect in MDA-MB-231 cells (where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the ß-catenin/[phospho]GSK-3ß complex as well as the E-cadherin/ß-catenin complex in both cell lines cells, but, again, the effect was more robust in MDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT status rather than on the cell's ER status. These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231 cells via a non-canonical mechanism. This potentially implicates an MAO-A-sensitive step in advanced breast cancer and should be borne in mind when considering pharmacological treatment options for co-morbid depression in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Clorgilina/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Monoaminooxidasa/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células MCF-7 , Invasividad Neoplásica/genética , ARN Mensajero/genética , Vimentina/metabolismo , beta Catenina/metabolismo
13.
Biochem J ; 441(1): 23-37, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22168437

RESUMEN

The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Regulación de la Expresión Génica/fisiología , Humanos , Isoformas de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...