Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(49): E11465-E11474, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30455320

RESUMEN

A-kinase anchoring proteins (AKAPs) shape second-messenger signaling responses by constraining protein kinase A (PKA) at precise intracellular locations. A defining feature of AKAPs is a helical region that binds to regulatory subunits (RII) of PKA. Mining patient-derived databases has identified 42 nonsynonymous SNPs in the PKA-anchoring helices of five AKAPs. Solid-phase RII binding assays confirmed that 21 of these amino acid substitutions disrupt PKA anchoring. The most deleterious side-chain modifications are situated toward C-termini of AKAP helices. More extensive analysis was conducted on a valine-to-methionine variant in the PKA-anchoring helix of AKAP18. Molecular modeling indicates that additional density provided by methionine at position 282 in the AKAP18γ isoform deflects the pitch of the helical anchoring surface outward by 6.6°. Fluorescence polarization measurements show that this subtle topological change reduces RII-binding affinity 8.8-fold and impairs cAMP responsive potentiation of L-type Ca2+ currents in situ. Live-cell imaging of AKAP18γ V282M-GFP adducts led to the unexpected discovery that loss of PKA anchoring promotes nuclear accumulation of this polymorphic variant. Targeting proceeds via a mechanism whereby association with the PKA holoenzyme masks a polybasic nuclear localization signal on the anchoring protein. This led to the discovery of AKAP18ε: an exclusively nuclear isoform that lacks a PKA-anchoring helix. Enzyme-mediated proximity-proteomics reveal that compartment-selective variants of AKAP18 associate with distinct binding partners. Thus, naturally occurring PKA-anchoring-defective AKAP variants not only perturb dissemination of local second-messenger responses, but also may influence the intracellular distribution of certain AKAP18 isoforms.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de la Membrana/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/genética , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Transporte de Proteínas
2.
Elife ; 62017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28967377

RESUMEN

Scaffolding the calcium/calmodulin-dependent phosphatase 2B (PP2B, calcineurin) focuses and insulates termination of local second messenger responses. Conformational flexibility in regions of intrinsic disorder within A-kinase anchoring protein 79 (AKAP79) delineates PP2B access to phosphoproteins. Structural analysis by negative-stain electron microscopy (EM) reveals an ensemble of dormant AKAP79-PP2B configurations varying in particle length from 160 to 240 Å. A short-linear interaction motif between residues 337-343 of AKAP79 is the sole PP2B-anchoring determinant sustaining these diverse topologies. Activation with Ca2+/calmodulin engages additional interactive surfaces and condenses these conformational variants into a uniform population with mean length 178 ± 17 Å. This includes a Leu-Lys-Ile-Pro sequence (residues 125-128 of AKAP79) that occupies a binding pocket on PP2B utilized by the immunosuppressive drug cyclosporin. Live-cell imaging with fluorescent activity-sensors infers that this region fine-tunes calcium responsiveness and drug sensitivity of the anchored phosphatase.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/química , Calcineurina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Humanos , Microscopía Electrónica , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas
3.
Science ; 356(6344): 1288-1293, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28642438

RESUMEN

Hormones can transmit signals through adenosine 3',5'-monophosphate (cAMP) to precise intracellular locations. The fidelity of these responses relies on the activation of localized protein kinase A (PKA) holoenzymes. Association of PKA regulatory type II (RII) subunits with A-kinase-anchoring proteins (AKAPs) confers location, and catalytic (C) subunits phosphorylate substrates. Single-particle electron microscopy demonstrated that AKAP79 constrains RII-C subassemblies within 150 to 250 angstroms of its targets. Native mass spectrometry established that these macromolecular assemblies incorporated stoichiometric amounts of cAMP. Chemical-biology- and live cell-imaging techniques revealed that catalytically active PKA holoenzymes remained intact within the cytoplasm. These findings indicate that the parameters of anchored PKA holoenzyme action are much more restricted than originally anticipated.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Holoenzimas/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular Tumoral , AMP Cíclico/química , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Holoenzimas/química , Humanos , Ratones , Microscopía Electrónica , Mitocondrias/enzimología , Fosforilación , Unión Proteica , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
4.
Biochem Soc Trans ; 44(5): 1313-1319, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27911714

RESUMEN

Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex's role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Depresión Sináptica a Largo Plazo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Humanos , Modelos Biológicos , Unión Proteica
5.
Cell Signal ; 28(7): 733-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26724383

RESUMEN

The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/metabolismo , Regulación hacia Abajo , Ventrículos Cardíacos/patología , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Envejecimiento , Animales , Animales Recién Nacidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Fenilefrina/farmacología , Transporte de Proteínas/efectos de los fármacos
6.
Front Pharmacol ; 6: 158, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26283967

RESUMEN

Phosphorylation events that occur in response to the second messenger cAMP are controlled spatially and temporally by protein kinase A (PKA) interacting with A-kinase anchoring proteins (AKAPs). Recent advances in understanding the structural basis for this interaction have reinforced the hypothesis that AKAPs create spatially constrained signaling microdomains. This has led to the realization that the PKA/AKAP interface is a potential drug target for modulating a plethora of cell-signaling events. Pharmacological disruption of kinase-AKAP interactions has previously been explored for disease treatment and remains an interesting area of research. However, disrupting or enhancing the association of phosphatases with AKAPs is a therapeutic concept of equal promise, particularly since they oppose the actions of many anchored kinases. Accordingly, numerous AKAPs bind phosphatases such as protein phosphatase 1 (PP1), calcineurin (PP2B), and PP2A. These multimodal signaling hubs are equally able to control the addition of phosphate groups onto target substrates, as well as the removal of these phosphate groups. In this review, we describe recent advances in structural analysis of kinase and phosphatase interactions with AKAPs, and suggest future possibilities for targeting these interactions for therapeutic benefit.

7.
J Biol Chem ; 290(32): 19445-57, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26088133

RESUMEN

The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3ß (GSK3ß). Using a combination of molecular and cellular approaches we show that GSK3ß phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3ß and its substrate ß-catenin in membrane ruffles. Interestingly, GSK3ß can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3ß activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3ß.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Epiteliales/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Células Epiteliales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Ingeniería Genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transducción de Señal
8.
J Biol Chem ; 290(22): 14107-19, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25882844

RESUMEN

Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa C/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Encéfalo/metabolismo , Citoplasma/metabolismo , Silenciador del Gen , Glutatión Transferasa/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Ligandos , Sustancias Macromoleculares , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Isoformas de Proteínas , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular , Transducción de Señal
9.
Circ Res ; 114(4): 607-15, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24323672

RESUMEN

RATIONALE: Increased contractility of arterial myocytes and enhanced vascular tone during hyperglycemia and diabetes mellitus may arise from impaired large-conductance Ca(2+)-activated K(+) (BKCa) channel function. The scaffolding protein A-kinase anchoring protein 150 (AKAP150) is a key regulator of calcineurin (CaN), a phosphatase known to modulate the expression of the regulatory BKCa ß1 subunit. Whether AKAP150 mediates BKCa channel suppression during hyperglycemia and diabetes mellitus is unknown. OBJECTIVE: To test the hypothesis that AKAP150-dependent CaN signaling mediates BKCa ß1 downregulation and impaired vascular BKCa channel function during hyperglycemia and diabetes mellitus. METHODS AND RESULTS: We found that AKAP150 is an important determinant of BKCa channel remodeling, CaN/nuclear factor of activated T-cells c3 (NFATc3) activation, and resistance artery constriction in hyperglycemic animals on high-fat diet. Genetic ablation of AKAP150 protected against these alterations, including augmented vasoconstriction. d-glucose-dependent suppression of BKCa channel ß1 subunits required Ca(2+) influx via voltage-gated L-type Ca(2+) channels and mobilization of a CaN/NFATc3 signaling pathway. Remarkably, high-fat diet mice expressing a mutant AKAP150 unable to anchor CaN resisted activation of NFATc3 and downregulation of BKCa ß1 subunits and attenuated high-fat diet-induced elevation in arterial blood pressure. CONCLUSIONS: Our results support a model whereby subcellular anchoring of CaN by AKAP150 is a key molecular determinant of vascular BKCa channel remodeling, which contributes to vasoconstriction during diabetes mellitus.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglucemia/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasoconstricción/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Grasas de la Dieta/farmacología , Técnicas de Sustitución del Gen , Hiperglucemia/genética , Hiperglucemia/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Factores de Transcripción NFATC/metabolismo , Péptidos/farmacología , Transducción de Señal/fisiología , Toxinas Biológicas/farmacología , Vasoconstricción/efectos de los fármacos
10.
EMBO J ; 31(20): 3991-4004, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22940692

RESUMEN

Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic ß-cells involves ion channels and mobilization of Ca(2+) and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-ß-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca(2+) currents, and attenuates cytoplasmic accumulation of Ca(2+) and cAMP in ß-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Resistencia a la Insulina/genética , Proteínas de la Membrana/fisiología , Fosfoproteínas Fosfatasas/fisiología , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/deficiencia , Proteínas de Anclaje a la Quinasa A/genética , Secuencias de Aminoácidos , Animales , Calcineurina/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , AMP Cíclico/fisiología , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Insulina/metabolismo , Insulina/farmacología , Secreción de Insulina , Insulinoma/patología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/metabolismo , Hígado/enzimología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Músculo Esquelético/enzimología , Neoplasias Pancreáticas/patología , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología , Eliminación de Secuencia , Células Tumorales Cultivadas/efectos de los fármacos , Células Tumorales Cultivadas/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(16): 6426-31, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21464287

RESUMEN

A-kinase anchoring protein 79 (AKAP79) is a human anchoring protein that organizes cAMP-dependent protein kinase (PKA), Ca(2+)/calmodulin (CaM)-dependent protein phosphatase (PP2B), and protein kinase C (PKC) for phosphoregulation of synaptic signaling. Quantitative biochemical analyses of selected AKAP79 complexes have determined the quaternary structure of these signaling complexes. We show that AKAP79 dimerizes, and we demonstrate that, upon addition of a lysine-reactive cross-linker, parallel homomeric dimers are stabilized through K328-K328 and K333-K333 cross-links. An assembly of greater complexity comprising AKAP79, PP2B, a type II regulatory subunit fragment (RII 1-45) of PKA, and CaM was reconstituted in vitro. Using native MS, we determined the molecular mass of this complex as 466 kDa. This indicates that dimeric AKAP79 coordinates two RII 1-45 homodimers, four PP2B heterodimers, and two CaM molecules. Binding of Ca(2+)/CaM to AKAP79 stabilizes the complex by generating a second interface for PP2B. This leads to activation of the anchored phosphatases. Our architectural model reveals how dimeric AKAP79 concentrates pockets of second messenger responsive enzyme activities at the plasma membrane.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Modelos Moleculares , Multimerización de Proteína/fisiología , Sistemas de Mensajero Secundario/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Calmodulina/genética , Calmodulina/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...