RESUMEN
Direct detection of biotinylated proteins (DiDBiT) is a proteomic method that can enrich and detect newly synthesized proteins (NSPs) labeled with bio-orthogonal amino acids with 20-fold improved detectability compared to conventional methods. However, DiDBiT has currently been used to compare only two conditions per experiment. Here, we present DiDBiT-TMT, a method that can be used to quantify NSPs across many conditions and replicates in the same experiment by combining isobaric tandem mass tagging (TMT) with DiDBiT. We applied DiDBiT-TMT to brain slices to determine changes in the de novo proteome that occur after inducing chemical long-term potentiation (cLTP) or treatment with the neuromodulator norepinephrine. We successfully demonstrated DiDBiT-TMT's capacity to quantitatively compare up to 9 samples in parallel. We showed that there is a minimal overlap among NSPs that are differentially expressed in cLTP-treated organotypic brain slices, norepinephrine-treated organotypic brain slices, and organotypic slices undergoing combinatorial treatment with norepinephrine and cLTP. Our results point to the possible divergence of the molecular mechanisms underlying these treatments and showcase the applicability of DiDBiT-TMT for studying neurobiology.
Asunto(s)
Biotinilación , Potenciación a Largo Plazo , Plasticidad Neuronal , Norepinefrina , Proteómica , Espectrometría de Masas en Tándem , Animales , Proteómica/métodos , Norepinefrina/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Proteoma/análisis , Proteoma/metabolismo , Ratones , Encéfalo/metabolismo , RatasRESUMEN
Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.
Asunto(s)
Neuronas Dopaminérgicas , Células Madre Pluripotentes , Humanos , Ratas , Animales , Neuronas Dopaminérgicas/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/fisiología , Mesencéfalo , Células Madre Pluripotentes/metabolismoRESUMEN
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Pez Cebra , Ratones , Animales , Progranulinas , Pez Cebra/metabolismo , Neuronas Motoras/metabolismo , Granulinas , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismoRESUMEN
Cytosine arabinoside (AraC) is one of the main therapeutic treatments for several types of cancer, including acute myeloid leukaemia. However, after a high-dose AraC chemotherapy regime, patients develop severe neurotoxicity and cell death in the central nervous system leading to cerebellar ataxia, dysarthria, nystagmus, somnolence and drowsiness. AraC induces apoptosis in dividing cells. However, the mechanism by which it leads to neurite degeneration and cell death in mature neurons remains unclear. We hypothesise that the upregulation of the death receptor p75NTR is responsible for AraC-mediated neurodegeneration and cell death in leukaemia patients undergoing AraC treatment. To determine the role of AraC-p75NTR signalling in the cell death of mature neurons, we used mature cerebellar granule neurons' primary cultures from p75NTR knockout and p75NTRCys259 mice. Evaluation of neurite degeneration, cell death and p75NTR signalling was done by immunohistochemistry and immunoblotting. To assess the interaction between AraC and p75NTR, we performed cellular thermal shift and AraTM assays as well as Homo-FRET anisotropy imaging. We show that AraC induces neurite degeneration and programmed cell death of mature cerebellar granule neurons in a p75NTR-dependent manner. Mechanistically, Proline 252 and Cysteine 256 residues facilitate AraC interaction with the transmembrane domain of p75NTR resulting in uncoupling of p75NTR from the NFκB survival pathway. This, in turn, exacerbates the activation of the cell death/JNK pathway by recruitment of TRAF6 to p75NTR. Our findings identify p75NTR as a novel molecular target to develop treatments for counteract AraC-mediated cell death of mature neurons.
Asunto(s)
Neuronas , Receptores de Factor de Crecimiento Nervioso , Animales , Ratones , Apoptosis/fisiología , Muerte Celular , Células Cultivadas , Neuritas/metabolismo , Neuronas/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismoRESUMEN
Purpose: To investigate the level and localization of the multifunctional receptor sortilin in the diabetic retina, as well as the effect of sortilin inhibition on retinal neurodegeneration in experimental diabetes. Methods: The localization of sortilin and colocalization with the p75 neurotrophin receptor (p75NTR) and Müller cell (MC) markers were determined using immunofluorescence on retinal sections from human patients with diabetes and streptozotocin-induced diabetic C57BL/6J male mice. In the diabetic mice, levels were further quantified using Western blot and quantitative PCR. Therapeutic studies were performed on diabetic mice using intravitreally injected anti-sortilin antibodies. Neuroprotection was evaluated in vivo by optical coherence tomography and by quantification of retinal ganglion cells (RGCs) in flat mounts. Results: Increased levels of sortilin were observed in human and murine diabetic retinas compared with nondiabetic control retinas. Sortilin was highly localized to retinal MCs, and, notably, colocalization with p75NTR was only seen in diabetic retinas. A remarkable protective effect of sortilin inhibition on inner retinal cells was observed in diabetic mice. At eight weeks after diabetes induction, inner retinal thickness was reduced by 9.7% (-12.7%, -6.6%; P < 0.0001; n = 11-12) in the PBS-injected control group compared with the anti-sortilin injected group. Similarly, the count of RGCs was reduced by 20.5% (-30.8%, -10.2%; P = 0.0009) in the PBS-injected control group compared with the anti-sortilin-injected group. Conclusions: Sortilin is upregulated in the diabetic retina, and sortilin inhibition effectively protects against neuronal loss. Thus sortilin emerges as a novel pharmacological target in diabetic retinal neurodegeneration-an important early event in the pathogenesis of diabetic retinopathy.
Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Humanos , Masculino , Ratones , Animales , Diabetes Mellitus Experimental/patología , Ratones Endogámicos C57BL , Retina/patología , Células Ganglionares de la Retina/patología , Retinopatía Diabética/prevención & control , Retinopatía Diabética/patologíaRESUMEN
The cerebellum is a multifunctional brain region that controls diverse motor and non-motor behaviors. As a result, impairments in the cerebellar architecture and circuitry lead to a vast array of neuropsychiatric and neurodevelopmental disorders. Neurotrophins and neurotrophic growth factors play essential roles in the development as well as maintenance of the central and peripheral nervous system which is crucial for normal brain function. Their timely expression throughout embryonic and postnatal stages is important for promoting growth and survival of both neurons and glial cells. During postnatal development, the cerebellum undergoes changes in its cellular organization, which is regulated by a variety of molecular factors, including neurotrophic factors. Studies have shown that these factors and their receptors promote proper formation of the cerebellar cytoarchitecture as well as maintenance of the cerebellar circuits. In this review, we will summarize what is known on the neurotrophic factors' role in cerebellar postnatal development and how their dysregulation assists in developing various neurological disorders. Understanding the expression patterns and signaling mechanisms of these factors and their receptors is crucial for elucidating their function within the cerebellum and for developing therapeutic strategies for cerebellar-related disorders.
RESUMEN
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer's disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Humanos , Péptidos beta-Amiloides , Transporte de Proteínas/fisiología , Factores de Crecimiento NerviosoRESUMEN
Peripheral nerve regeneration relies on the ability of Schwann cells to support the regrowth of damaged axons. Schwann cells re-differentiate when reestablishing contact with the sprouting axons, with large fibers becoming remyelinated and small nociceptive fibers ensheathed and collected into Remak bundles. We have previously described how the receptor sortilin facilitates neurotrophin signaling in peripheral neurons via regulated trafficking of Trk receptors. This study aims to characterize the effects of sortilin deletion on nerve regeneration following sciatic crush injury. We found that Sort1 - / - mice displayed functional motor recovery like that of WT mice, with no detectable differences in relation to nerve conduction velocities and morphological aspects of myelinated fibers. In contrast, we found abnormal ensheathment of regenerated C-fibers in injured Sort1 - / - mice, demonstrating a role of sortilin for Remak bundle formation following injury. Further studies on Schwann cell signaling pathways showed a significant reduction of MAPK/ERK, RSK, and CREB phosphorylation in Sort1 - / - Schwann cells after stimulation with neurotrophin-3 (NT-3), while Schwann cell migration and myelination remained unaffected. In conclusion, our results demonstrate that loss of sortilin blunts NT-3 signaling in Schwann cells which might contribute to the impaired Remak bundle regeneration after sciatic nerve injury.
RESUMEN
Sortilin, an intracellular sorting receptor, has been identified as a cardiovascular risk factor in the general population. Patients with chronic kidney disease (CKD) are highly susceptible to develop cardiovascular complications such as calcification. However, specific CKD-induced posttranslational protein modifications of sortilin and their link to cardiovascular calcification remain unknown. To investigate this, we examined two independent CKD cohorts for carbamylation of circulating sortilin and detected increased carbamylated sortilin lysine residues in the extracellular domain of sortilin with kidney function decline using targeted mass spectrometry. Structure analysis predicted altered ligand binding by carbamylated sortilin, which was verified by binding studies using surface plasmon resonance measurement, showing an increased affinity of interleukin 6 to in vitro carbamylated sortilin. Further, carbamylated sortilin increased vascular calcification in vitro and ex vivo that was accelerated by interleukin 6. Imaging by mass spectrometry of human calcified arteries revealed in situ carbamylated sortilin. In patients with CKD, sortilin carbamylation was associated with coronary artery calcification, independent of age and kidney function. Moreover, patients with carbamylated sortilin displayed significantly faster progression of coronary artery calcification than patients without sortilin carbamylation. Thus, carbamylated sortilin may be a risk factor for cardiovascular calcification and may contribute to elevated cardiovascular complications in patients with CKD.
Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Proteínas Adaptadoras del Transporte Vesicular , Humanos , Carbamilación de Proteína , Procesamiento Proteico-Postraduccional , Calcificación Vascular/etiologíaRESUMEN
Genetic variants in the genomic region containing SORT1 (encoding the protein sortilin) are strongly associated with cholesterol levels and the risk of coronary artery disease (CAD). Circulating sortilin has therefore been proposed as a potential biomarker for cardiovascular disease. Multiple studies have reported association between plasma sortilin levels and cardiovascular outcomes. However, the findings are not consistent across studies, and most studies have small sample sizes. The aim of this study was to evaluate sortilin as a biomarker for CAD in a well-characterized cohort with symptoms suggestive of CAD. In total, we enrolled 1,173 patients with suspected stable CAD referred to coronary computed tomography angiography. Sortilin was measured in plasma using two different technologies for quantifying circulating sortilin: a custom-made enzyme-linked immunosorbent assay (ELISA) and OLINK Cardiovascular Panel II. We found a relative poor correlation between the two methods (correlation coefficient = 0.21). In addition, genotyping and whole-genome sequencing were performed on all patients. By whole-genome regression analysis of sortilin levels measured with ELISA and OLINK, two independent cis protein quantitative trait loci (pQTL) on chromosome 1p13.3 were identified, with one of them being a well-established risk locus for CAD. Incorporating rare genetic variants from whole-genome sequence data did not identify any additional pQTLs for plasma sortilin. None of the traditional CAD risk factors, such as sex, age, smoking, and statin use, were associated with plasma sortilin levels. Furthermore, there was no association between circulating sortilin levels and coronary artery calcium score (CACS) or disease severity. Sortilin did not improve discrimination of obstructive CAD, when added to a clinical pretest probability (PTP) model for CAD. Overall, our results indicate that studies using different methodologies for measuring circulating sortilin should be compared with caution. In conclusion, the well-known SORT1 risk locus for CAD is linked to lower sortilin levels in circulation, measured with ELISA; however, the effect sizes are too small for sortilin to be a useful biomarker for CAD in a clinical setting of low- to intermediate-risk chest-pain patients.
RESUMEN
SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.
Asunto(s)
Empalme Alternativo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Dendritas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Empalme Alternativo/genética , Autopsia , Encéfalo/metabolismo , Cerebelo/patología , Estudios de Cohortes , Dendritas/genética , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Proteínas Relacionadas con Receptor de LDL/análisis , Masculino , Proteínas de Transporte de Membrana/análisis , Neuronas/metabolismo , Bancos de TejidosRESUMEN
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder worldwide. Affected individuals present with hyperactivity, inattention, and cognitive deficits and display a characteristic paradoxical response to drugs affecting the dopaminergic system. However, the underlying pathophysiology of ADHD and how this relates to dopaminergic transmission remains to be fully understood. Sorcs2-/- mice uniquely recapitulate symptoms reminiscent of ADHD in humans. Here, we show that lack of SorCS2 in mice results in lower sucrose intake, indicating general reward deficits. Using in-vivo recordings, we further find that dopaminergic transmission in the ventral tegmental area (VTA) is shifted towards a more regular firing pattern with marked reductions in the relative occurrence of irregular firing in Sorcs2-/- mice. This was paralleled by abnormal acute behavioral responses to dopamine receptor agonists, suggesting fundamental differences in dopaminergic circuits and indicating a perturbation in the balance between the activities of the postsynaptic dopamine receptor DRD1 and the presynaptic inhibitory autoreceptor DRD2. Interestingly, the hyperactivity and drug response of Sorcs2-/- mice were markedly affected by novelty. Taken together, our findings show how loss of a candidate ADHD-risk gene has marked effects on dopaminergic circuit function and the behavioral response to the environment.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Dopamina , Ratones , Proteínas del Tejido Nervioso , Receptores de Superficie Celular , Receptores Dopaminérgicos , Recompensa , Área Tegmental VentralRESUMEN
Alcohol use disorder (AUD) is characterized by repetitive and uncontrolled intake of alcohol with severe consequences for affected individuals, their families and society as a whole. Numerous studies have implicated brain-derived neurotrophic factor (BDNF) activity in the neurobiology underlying AUD. The BDNF signaling mechanism is complex and depends on two receptor systems, TrkB and p75NTR, which appear to have opposite effects on alcohol seeking behavior in animal models. We recently discovered that the sortilin-related receptor SorCS2 forms complexes with both TrkB and p75NTR and is important for BDNF activity in the developing and adult CNS. Moreover, the SORCS2 gene was recently identified as the top association signal for severity of alcohol withdrawal symptoms. Hence, we speculated that SorCS2 deficient mice would have an altered response to alcohol. The role of SorCS2 in the acute and adapted response to alcohol was therefore investigated by comparing SorCS2 knockout (Sorcs2-/- ) mice to wild type (WT) mice in three paradigms modeling alcohol sensitivity and consumption; alcohol-induced conditioned place preference, two-bottle choice test as well as the behavioral response to alcohol withdrawal. We found that, when compared to the WT mice, (I) Sorcs2-/- mice displayed complete lack of alcohol-induced place preference, (II) when given free choice between water and alcohol, Sorcs2-/- mice consumed less alcohol, and (III) Sorcs2-/- mice showed no handling-induced convulsion in response to alcohol withdrawal following extended alcohol exposure. Taken together, these results show that lack of the alcohol withdrawal risk gene Sorcs2 results in abnormal behavioral response to alcohol in mice. Consequently, SorCS2 may play an important role in the molecular pathways underlying AUD and complications associated with alcohol withdrawal.
RESUMEN
Neuropathic pain is a major incurable clinical problem resulting from peripheral nerve trauma or disease. A central mechanism is the reduced expression of the potassium chloride cotransporter 2 (KCC2) in dorsal horn neurons induced by brain-derived neurotrophic factor (BDNF), causing neuronal disinhibition within spinal nociceptive pathways. Here, we demonstrate how neurotensin receptor 2 (NTSR2) signaling impairs BDNF-induced spinal KCC2 down-regulation, showing how these two pathways converge to control the abnormal sensory response following peripheral nerve injury. We establish how sortilin regulates this convergence by scavenging neurotensin from binding to NTSR2, thus modulating its inhibitory effect on BDNF-mediated mechanical allodynia. Using sortilin-deficient mice or receptor inhibition by antibodies or a small-molecule antagonist, we lastly demonstrate that we are able to fully block BDNF-induced pain and alleviate injury-induced neuropathic pain, validating sortilin as a clinically relevant target.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuralgia/metabolismo , Neurotensina/metabolismo , Animales , Regulación hacia Abajo/fisiología , Femenino , Humanos , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/metabolismo , Receptores de Neurotensina/metabolismo , Transducción de Señal/fisiologíaRESUMEN
VPS10P domain receptors emerge as central regulators of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a role for the family member SorCS2 in protection of neurons from oxidative stress and epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that sustains cell surface expression of the neuronal amino acid transporter EAAT3 to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Lack of SorCS2 causes depletion of EAAT3 from the plasma membrane and impairs neuronal cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide a possible explanation for upregulation of this receptor seen in surviving neurons of the human epileptic brain.
Asunto(s)
Epilepsia/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Receptores de Superficie Celular/metabolismo , Animales , Epilepsia/metabolismo , Epilepsia/patología , Transportador 3 de Aminoácidos Excitadores/biosíntesis , Transportador 3 de Aminoácidos Excitadores/genética , Femenino , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Receptores de Superficie Celular/genéticaRESUMEN
The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin ß1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.
Asunto(s)
Proteína ADAMTS9/metabolismo , Matriz Extracelular/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteína ADAMTS9/genética , Alelos , Animales , Humanos , Inmunohistoquímica , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Integrina beta1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
BACKGROUND: Efforts to promote the cessation of harmful alcohol use are hindered by the affective and physiological components of alcohol withdrawal (AW), which can include life-threatening seizures. Although previous studies of AW and relapse have highlighted the detrimental role of stress, little is known about genetic risk factors. METHODS: We conducted a genome-wide association study of AW symptom count in uniformly assessed subjects with histories of serious AW, followed by additional genotyping in independent AW subjects. RESULTS: The top association signal for AW severity was in sortilin family neurotrophin receptor gene SORCS2 on chromosome 4 (European American meta-analysis n = 1,478, p = 4.3 × 10-9 ). There were no genome-wide significant findings in African Americans (n = 1,231). Bioinformatic analyses were conducted using publicly available high-throughput transcriptomic and epigenomic data sets, showing that in humans SORCS2 is most highly expressed in the nervous system. The identified SORCS2 risk haplotype is predicted to disrupt a stress hormone-modulated regulatory element that has tissue-specific activity in human hippocampus. We used human neural lineage cells to demonstrate in vitro a causal relationship between stress hormone levels and SORCS2 expression, and show that SORCS2 levels in culture are increased upon ethanol exposure and withdrawal. CONCLUSIONS: Taken together, these findings indicate that the pathophysiology of withdrawal may involve the effects of stress hormones on neurotrophic factor signaling. Further investigation of these pathways could produce new approaches to managing the aversive consequences of abrupt alcohol cessation.
Asunto(s)
Convulsiones por Abstinencia de Alcohol/genética , Receptores de Superficie Celular/genética , Adulto , Población Negra , Línea Celular , Biología Computacional , Dexametasona/farmacología , Femenino , Estudio de Asociación del Genoma Completo , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Población BlancaRESUMEN
SORL1 encodes a 250-kDa protein named sorLA, a functional sorting receptor for the amyloid precursor protein (APP). Several single nucleotide polymorphisms of the gene SORL1, encoding sorLA, are genetically associated with Alzheimer's disease (AD). In the existing literature, SORL1 is insufficiently described at the transcriptional level, and there is very limited amount of functional data defining different transcripts. We have characterized a SORL1 transcript containing a novel exon 30B. The transcript is expressed in most brain regions with highest expression in the temporal lobe and hippocampus. Exon 30B is spliced to exon 31, leading to a mature transcript that encodes an 829 amino acid sorLA receptor. This receptor variant lacks the binding site for APP and is unlikely to function in APP sorting. This transcript is expressed in equal amounts in the cerebellum from AD and non-AD individuals. Our data describe a transcript that encodes a truncated sorLA receptor, suggesting novel neuronal functions for sorLA and that alternative transcription provides a mechanism for SORL1 activity regulation.
Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Anciano , Enfermedad de Alzheimer/metabolismo , Línea Celular , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Análisis de Secuencia de ADNRESUMEN
Beneficial effects of omega-3 fatty acid intake on cognition are under debate as some studies show beneficial effects while others show no effects of omega-3 supplementation. These inconsistencies may be a result of inter-individual response variations, potentially caused by gene and diet interactions. SorLA is a multifunctional receptor involved in ligand trafficking including lipoprotein lipase and amyloid precursor protein. Decreased SorLA levels have been correlated to Alzheimer's disease, and omega-3 fatty acid supplementation is known to increase SorLA expression in neuronal cell lines and mouse models. We therefore addressed potential correlations between Sorl1 and dietary omega-3 in SorLA deficient mice (Sorl1-/-) and controls exposed to diets supplemented with or deprived of omega-3 during their entire development and lifespan (lifelong) or solely from the time of weaning (post weaning). Observed diet-induced effects were only evident when exposed to lifelong omega-3 supplementation or deprivation as opposed to post weaning exposure only. Lifelong exposure to omega-3 supplementation resulted in impaired spatial learning in Sorl1-/- mice. The vitamin C antioxidant capacity in the brains of Sorl1-/- mice was reduced, but reduced glutathione and vitamin E levels were increased, leaving the overall antioxidant capacity of the brain inconclusive. No gross morphological differences of hippocampal neurons were found to account for the altered behavior. We found a significant adverse effect in cognitive performance by combining SorLA deficiency with lifelong exposure to omega-3. Our results stress the need for investigations of the underlying molecular mechanisms to clarify the precise circumstances under which omega-3 supplementation may be beneficial.