Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(4): 396-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148303

RESUMEN

We used serial block-face scanning electron microscopy (SBF-SEM) to study the host-pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum-Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral (x-y) pixel resolution of 10 nm and an axial (z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum-Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arabidopsis , Colletotrichum , Cotiledón , Microscopía Electrónica de Rastreo , Enfermedades de las Plantas , Colletotrichum/fisiología , Colletotrichum/ultraestructura , Colletotrichum/patogenicidad , Arabidopsis/microbiología , Arabidopsis/ultraestructura , Cotiledón/microbiología , Cotiledón/ultraestructura , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hifa/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Transmisión
2.
Metab Eng ; 80: 216-231, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863177

RESUMEN

Transcriptomic studies have revealed that fungal pathogens of plants activate the expression of numerous biosynthetic gene clusters (BGC) exclusively when in presence of a living host plant. The identification and structural elucidation of the corresponding secondary metabolites remain challenging. The aim was to develop a polycistronic system for heterologous expression of fungal BGCs in Saccharomyces cerevisiae. Here we adapted a polycistronic vector for efficient, seamless and cost-effective cloning of biosynthetic genes using in vivo assembly (also called transformation-assisted recombination) directly in Escherichia coli followed by heterologous expression in S. cerevisiae. Two vectors were generated with different auto-inducible yeast promoters and selection markers. The effectiveness of these vectors was validated with fluorescent proteins. As a proof-of-principle, we applied our approach to the Colletochlorin family of molecules. These polyketide secondary metabolites were known from the phytopathogenic fungus Colletotrichum higginsianum but had never been linked to their biosynthetic genes. Considering the requirement for a halogenase, and by applying comparative genomics, we identified a BGC putatively involved in the biosynthesis of Colletochlorins in C. higginsianum. Following the expression of those genes in S. cerevisiae, we could identify the presence of the precursor Orsellinic acid, Colletochlorins and their non-chlorinated counterparts, the Colletorins. In conclusion, the polycistronic vectors described herein were adapted for the host S. cerevisiae and allowed to link the Colletochlorin compound family to their corresponding biosynthetic genes. This system will now enable the production and purification of infection-specific secondary metabolites of fungal phytopathogens. More widely, this system could be applied to any fungal BGC of interest.


Asunto(s)
Familia de Multigenes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiones Promotoras Genéticas , Familia de Multigenes/genética
3.
Mol Plant Pathol ; 24(11): 1451-1464, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522511

RESUMEN

Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.


Asunto(s)
Arabidopsis , Colletotrichum , Técnicas de Inactivación de Genes , Sistemas CRISPR-Cas/genética , Arabidopsis/genética , Arabidopsis/microbiología , Factores de Virulencia/genética , Colletotrichum/genética
4.
Sci Rep ; 13(1): 1417, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697464

RESUMEN

We report here a new application, CustomProteinSearch (CusProSe), whose purpose is to help users to search for proteins of interest based on their domain composition. The application is customizable. It consists of two independent tools, IterHMMBuild and ProSeCDA. IterHMMBuild allows the iterative construction of Hidden Markov Model (HMM) profiles for conserved domains of selected protein sequences, while ProSeCDA scans a proteome of interest against an HMM profile database, and annotates identified proteins using user-defined rules. CusProSe was successfully used to identify, in fungal genomes, genes encoding key enzyme families involved in secondary metabolism, such as polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), hybrid PKS-NRPS and dimethylallyl tryptophan synthases (DMATS), as well as to characterize distinct terpene synthases (TS) sub-families. The highly configurable characteristics of this application makes it a generic tool, which allows the user to refine the function of predicted proteins, to extend detection to new enzymes families, and may also be applied to biological systems other than fungi and to other proteins than those involved in secondary metabolism.


Asunto(s)
Hongos , Anotación de Secuencia Molecular , Metabolismo Secundario , Programas Informáticos , Secuencia de Aminoácidos , Anotación de Secuencia Molecular/métodos , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Metabolismo Secundario/genética , Hongos/enzimología , Hongos/genética , Triptófano Sintasa/genética , Secuencia Conservada/genética
5.
Simul Healthc ; 18(2): 82-89, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35238848

RESUMEN

INTRODUCTION: Simulation tools to assess prehospital team performance and identify patient safety events are lacking. We adapted a simulation model and checklist tool of individual paramedic performance to assess prehospital team performance and tested interrater reliability. METHODS: We used a modified Delphi process to adapt 3 simulation cases (cardiopulmonary arrest, seizure, asthma) and checklist to add remote physician direction, target infants, and evaluate teams of 2 paramedics and 1 physician. Team performance was assessed with a checklist of steps scored as complete/incomplete by raters using direct observation or video review. The composite performance score was the percentage of completed steps. Interrater percent agreement was compared with the original tool. The tool was modified, and raters trained in iterative rounds until composite performance scoring agreement was 0.80 or greater (scale <0.20 = poor; 0.21-0.39 = fair, 0.40-0.59 = moderate; 0.60-0.79 = good; 0.80-1.00 = very good). RESULTS: We achieved very good interrater agreement for scoring composite performance in 2 rounds using 6 prehospital teams and 4 raters. The original 175 step tool was modified to 171 steps. Interrater percent agreement for the final modified tool approximated the original tool for the composite checklist (0.80 vs. 0.85), cardiopulmonary arrest (0.82 vs. 0.86), and asthma cases (0.80 vs. 0.77) but was lower for the seizure case (0.76 vs. 0.91). Most checklist items (137/171, 80%) had good-very good agreement. Among 34 items with fair-moderate agreement, 15 (44%) related to patient assessment, 9 (26%) equipment use, 6 (18%) medication delivery, and 4 (12%) cardiopulmonary resuscitation quality. CONCLUSIONS: The modified checklist has very good agreement for assessing composite prehospital team performance and can be used to test effects of patient safety interventions.


Asunto(s)
Servicios Médicos de Urgencia , Paro Cardíaco , Lactante , Humanos , Niño , Lista de Verificación , Reproducibilidad de los Resultados , Paro Cardíaco/diagnóstico , Paro Cardíaco/terapia , Convulsiones
6.
Sci Adv ; 8(51): eade9982, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542709

RESUMEN

Global food security is endangered by fungal phytopathogens causing devastating crop production losses. Many of these pathogens use specialized appressoria cells to puncture plant cuticles. Here, we unveil a pair of alcohol oxidase-peroxidase enzymes to be essential for pathogenicity. Using Colletotrichum orbiculare, we show that the enzyme pair is cosecreted by the fungus early during plant penetration and that single and double mutants have impaired penetration ability. Molecular modeling, biochemical, and biophysical approaches revealed a fine-tuned interplay between these metalloenzymes, which oxidize plant cuticular long-chain alcohols into aldehydes. We show that the enzyme pair is involved in transcriptional regulation of genes necessary for host penetration. The identification of these infection-specific metalloenzymes opens new avenues on the role of wax-derived compounds and the design of oxidase-specific inhibitors for crop protection.


Asunto(s)
Proteínas Fúngicas , Metaloproteínas , Proteínas Fúngicas/genética , Células Vegetales , Hongos , Virulencia
7.
J Extracell Vesicles ; 11(5): e12216, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524440

RESUMEN

Fungal phytopathogens secrete extracellular vesicles (EVs) associated with enzymes and phytotoxic metabolites. While these vesicles are thought to promote infection, defining the true contents and functions of fungal EVs, as well as suitable protein markers, is an ongoing process. To expand our understanding of fungal EVs and their possible roles during infection, we purified EVs from the hemibiotrophic phytopathogen Colletotrichum higginsianum, the causative agent of anthracnose disease in multiple plant species, including Arabidopsis thaliana. EVs were purified in large numbers from the supernatant of protoplasts but not the supernatant of intact mycelial cultures. We purified two separate populations of EVs, each associated with over 700 detected proteins, including proteins involved in vesicle transport, cell wall biogenesis and the synthesis of secondary metabolites. We selected two SNARE proteins (Snc1 and Sso2) and one 14-3-3 protein (Bmh1) as potential EV markers and generated transgenic strains expressing fluorescent fusions. Each marker was confirmed to be protected inside EVs. Fluorescence microscopy was used to examine the localization of each marker during infection on Arabidopsis leaves. These findings further our understanding of EVs in fungal phytopathogens and will help build an experimental system to study EV interkingdom communication between plants and fungi.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Vesículas Extracelulares , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología
8.
Elife ; 112022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119361

RESUMEN

Filamentous fungal and oomycete plant pathogens that invade by direct penetration through the leaf epidermal cell wall cause devastating plant diseases. Plant preinvasive immunity toward nonadapted filamentous pathogens is highly effective and durable. Pre- and postinvasive immunity correlates with the formation of evolutionarily conserved and cell-autonomous cell wall structures, named papillae and encasements, respectively. Yet, it is still unresolved how papillae/encasements are formed and whether these defense structures prevent pathogen ingress. Here, we show that in Arabidopsis the two closely related members of the SYP12 clade of syntaxins (PEN1 and SYP122) are indispensable for the formation of papillae and encasements. Moreover, loss-of-function mutants were hampered in preinvasive immunity toward a range of phylogenetically distant nonadapted filamentous pathogens, underlining the versatility and efficacy of this defense. Complementation studies using SYP12s from the early diverging land plant, Marchantia polymorpha, showed that the SYP12 clade immunity function has survived 470 million years of independent evolution. These results suggest that ancestral land plants evolved the SYP12 clade to provide a broad and durable preinvasive immunity to facilitate their life on land and pave the way to a better understanding of how adapted pathogens overcome this ubiquitous plant defense strategy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Colletotrichum , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Predisposición Genética a la Enfermedad , Marchantia , Phytophthora infestans , Enfermedades de las Plantas/genética , Proteínas Qa-SNARE/genética
9.
Appl Environ Microbiol ; 87(24): e0152621, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613753

RESUMEN

Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum, and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in the absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29 to 52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11, AA12, AA13, and AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris, and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavor and fragrance ingredients. Copper radical alcohol oxidases (CRO-AlcOx) have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial applications to alleviate various costs pertaining to biocatalyst production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative stress conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, and lytic polysaccharide monooxygenases [LPMOs]) usually assigned to "plant cell wall degradation," despite the absence of any plant-biomass mimicking compound. However, in these conditions, only small amounts of CRO-AlcOx were secreted, pointing out recombinant expression as the most promising path for their biocatalytic application.


Asunto(s)
Colletotrichum , Cobre , Ácidos Grasos/biosíntesis , Oxidorreductasas/metabolismo , Alcoholes , Aldehídos , Colletotrichum/enzimología , Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxidorreductasas/genética , Secretoma
10.
J Exp Bot ; 71(10): 2910-2921, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32006004

RESUMEN

Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Diterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Colletotrichum , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas
11.
Mol Plant Pathol ; 20(6): 831-842, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30924614

RESUMEN

The role of histone 3 lysine 4 (H3K4) methylation is poorly understood in plant pathogenic fungi. Here, we analysed the function of CclA, a subunit of the COMPASS complex mediating H3K4 methylation, in the brassica anthracnose pathogen Colletotrichum higginsianum. We show that CclA is required for full genome-wide H3K4 trimethylation. The deletion of cclA strongly reduced mycelial growth, asexual sporulation and spore germination but did not impair the morphogenesis of specialized infection structures (appressoria and biotrophic hyphae). Virulence of the ΔcclA mutant on plants was strongly attenuated, associated with a marked reduction in appressorial penetration ability on both plants and inert cellophane membranes. The secondary metabolite profile of the ΔcclA mutant was greatly enriched compared to that of the wild type, with three different families of terpenoid compounds being overproduced by the mutant, namely the colletochlorins, higginsianins and sclerosporide. These included five novel molecules that were produced exclusively by the ΔcclA mutant: colletorin D, colletorin D acid, higginsianin C, 13-epi-higginsianin C and sclerosporide. Taken together, our findings indicate that H3K4 trimethylation plays a critical role in regulating fungal growth, development, pathogenicity and secondary metabolism in C. higginsianum.


Asunto(s)
Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Diterpenos/metabolismo , Histonas/metabolismo , Arabidopsis/microbiología , Colletotrichum/genética , Metilación , Mutación/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Virulencia
12.
Environ Microbiol ; 21(8): 2724-2739, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30887618

RESUMEN

Plant-tissue-colonizing fungi fine-tune the deconstruction of plant-cell walls (PCW) using different sets of enzymes according to their lifestyle. However, some of these enzymes are conserved among fungi with dissimilar lifestyles. We identified genes from Glycoside Hydrolase family GH131 as commonly expressed during plant-tissue colonization by saprobic, pathogenic and symbiotic fungi. By searching all the publicly available genomes, we found that GH131-coding genes were widely distributed in the Dikarya subkingdom, except in Taphrinomycotina and Saccharomycotina, and in phytopathogenic Oomycetes, but neither other eukaryotes nor prokaryotes. The presence of GH131 in a species was correlated with its association with plants as symbiont, pathogen or saprobe. We propose that GH131-family expansions and horizontal-gene transfers contributed to this adaptation. We analysed the biochemical activities of GH131 enzymes whose genes were upregulated during plant-tissue colonization in a saprobe (Pycnoporus sanguineus), a plant symbiont (Laccaria bicolor) and three hemibiotrophic-plant pathogens (Colletotrichum higginsianum, C. graminicola, Zymoseptoria tritici). These enzymes were all active on substrates with ß-1,4, ß-1,3 and mixed ß-1,4/1,3 glucosidic linkages. Combined with a cellobiohydrolase, GH131 enzymes enhanced cellulose degradation. We propose that secreted GH131 enzymes unlock the PCW barrier and allow further deconstruction by other enzymes during plant tissue colonization by symbionts, pathogens and saprobes.


Asunto(s)
Hongos/enzimología , Glicósido Hidrolasas/metabolismo , Oomicetos/enzimología , Plantas/microbiología , Ascomicetos/enzimología , Ascomicetos/genética , Pared Celular/metabolismo , Hongos/genética , Transferencia de Gen Horizontal , Glicósido Hidrolasas/genética , Oomicetos/genética , Simbiosis
13.
New Phytol ; 223(2): 590-596, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30851201

RESUMEN

Molecular plant-fungal interaction studies have mainly focused on small secreted protein effectors. However, accumulating evidence shows that numerous fungal secondary metabolites are produced at all stages of plant colonization, especially during early asymptomatic/biotrophic phases. The discovery of fungal small RNAs targeting plant transcripts has expanded the fungal repertoire of nonproteinaceous effectors even further. The challenge now is to develop specific functional methods to fully understand the biological roles of these effectors. Studies on fungal extracellular vesicles are also needed because they could be the universal carriers of all kinds of fungal effectors. With this review, we aim to stimulate the nonproteinaceous effector research field to move from descriptive to functional studies, which should bring a paradigm shift in plant-fungal interactions.


Asunto(s)
Hongos/fisiología , Interacciones Huésped-Patógeno , Plantas/microbiología , Regulación Fúngica de la Expresión Génica , Células Vegetales/metabolismo , Plantas/genética , Metabolismo Secundario
14.
J Nat Prod ; 82(4): 813-822, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30776231

RESUMEN

Colletotrichum higginsianum is the causal agent of crucifer anthracnose disease, responsible for important economic losses in Brassica crops. A mutant lacking the CclA subunit of the COMPASS complex was expected to undergo chromatin decondensation and the activation of cryptic secondary metabolite biosynthetic gene clusters. Liquid-state fermentation of the Δ cclA mutant coupled with in situ solid-phase extraction led to the production of three families of compounds, namely, colletorin and colletochlorin derivatives with two new representatives, colletorin D (1) and colletorin D acid (2), the diterpenoid α-pyrone higginsianin family with two new analogues, higginsianin C (3) and 13- epi-higginsianin C (4), and sclerosporide (5) coupling a sclerosporin moiety with dimethoxy inositol.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Colletotrichum/metabolismo , Eliminación de Gen , Espectroscopía de Resonancia Magnética con Carbono-13 , Cromatografía Líquida de Alta Presión , Colletotrichum/genética , Genes Fúngicos , Espectroscopía de Protones por Resonancia Magnética
15.
Front Plant Sci ; 9: 562, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29770142

RESUMEN

The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae. We then used Agrobacterium-mediated transformation to transiently express them as N-terminal fusions with fluorescent proteins in cells of Nicotiana benthamiana for imaging by confocal microscopy. Plant compartments labeled by the fusion proteins in N. benthamiana were validated by co-localization with specific organelle markers, by transient expression of the proteins in the true host plant, Arabidopsis thaliana, and by transmission electron microscopy-immunogold labeling. Among those proteins for which specific subcellular localizations could be verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes, three decorated cortical microtubule arrays and one labeled Golgi stacks. Two peroxisome-targeted proteins harbored canonical C-terminal tripeptide signals for peroxisome import via the PTS1 (peroxisomal targeting signal 1) pathway, and we showed that these signals are essential for their peroxisome localization. Our findings provide valuable information about which host processes are potentially manipulated by this pathogen, and also reveal plant peroxisomes, microtubules, and Golgi as novel targets for fungal effectors.

16.
Sci Rep ; 7(1): 9319, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839137

RESUMEN

Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant plants exhibit complete immunity against infection by otherwise virulent obligate biotrophic powdery mildew fungi such as Golovinomyces orontii. While this phenotype is well documented, the interaction profile of the triple mutant with other microbes is underexplored and incomplete. Here, we thoroughly assessed and quantified the infection phenotypes of two independent powdery mildew-resistant triple mutant lines with a range of microbes. These microorganisms belong to three kingdoms of life, engage in diverse trophic lifestyles, and deploy different infection strategies. We found that interactions with microbes that do not directly enter leaf epidermal cells were seemingly unaltered or showed even enhanced microbial growth or symptom formation in the mlo2 mlo6 mlo12 triple mutants, as shown for Pseudomonas syringae and Fusarium oxysporum. By contrast, the mlo2 mlo6 mlo12 triple mutants exhibited reduced host cell entry rates by Colletotrichum higginsianum, a fungal pathogen showing direct penetration of leaf epidermal cells comparable to G. orontii. Together with previous findings, the results of this study strengthen the notion that mutations in genes MLO2, MLO6 and MLO12 not only restrict powdery mildew colonization, but also affect interactions with a number of other phytopathogens.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Unión a Calmodulina/genética , Colletotrichum/patogenicidad , Resistencia a la Enfermedad , Fusarium/patogenicidad , Proteínas de la Membrana/genética , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Arabidopsis/microbiología , Colletotrichum/crecimiento & desarrollo , Fusarium/crecimiento & desarrollo , Proteínas Mutantes/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/crecimiento & desarrollo
17.
BMC Genomics ; 18(1): 667, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851275

RESUMEN

BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.


Asunto(s)
Cromosomas Fúngicos/genética , Colletotrichum/genética , Colletotrichum/metabolismo , Elementos Transponibles de ADN/genética , Genómica , Familia de Multigenes/genética , Recombinación Homóloga/genética , Anotación de Secuencia Molecular , Filogenia , Mutación Puntual/genética
19.
Genome Announc ; 4(4)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540062

RESUMEN

Colletotrichum higginsianum is an ascomycete fungus causing anthracnose disease on numerous cultivated plants in the family Brassicaceae, as well as the model plant Arabidopsis thaliana We report an assembly of the nuclear genome and gene annotation of this pathogen, which was obtained using a combination of PacBio long-read sequencing and optical mapping.

20.
New Phytol ; 211(4): 1323-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27174033

RESUMEN

The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. We show that recombinant ChELP1 and ChELP2 bind chitin and chitin oligomers in vitro with high affinity and specificity and that both proteins suppress the chitin-triggered activation of two immune-related plant mitogen-activated protein kinases in the host Arabidopsis. Using RNAi-mediated gene silencing, we found that ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro. The findings suggest a dual role for these LysM proteins as effectors for suppressing chitin-triggered immunity and as proteins required for appressorium function.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Quitina/farmacología , Colletotrichum/metabolismo , Espacio Extracelular/química , Proteínas Fúngicas/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Quitinasas/metabolismo , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Colletotrichum/patogenicidad , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Hifa/metabolismo , Mutación/genética , Filogenia , Interferencia de ARN , Transcripción Genética/efectos de los fármacos , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA