Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sex Health ; 212024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626204

RESUMEN

Background Sexting is the sending and receiving of nude or partially nude images or videos. Despite it being a part of contemporary relationships, it can have adverse effects. This is particularly the case when receiving non-consensual sexts. To date, there remains a gap in the literature on whether receiving non-consensual sexts is associated with poor sleep. Therefore, the aim of this study was to determine the association between receiving non-consensual sexts and average sleep duration. Methods Data from Wave 2 (2022) of the Canadian Study of Adolescent Health Behaviours (N =906) were analysed. Multinomial logistic regression analyses were used to determine the association between receiving non-consensual sexts (both image and video) in the past 12months and average sleep duration (≤5h, 6h, 7h, 8h, and ≥9h) in the past 2weeks. Analyses were stratified by gender. Results Girls and women who received non-consensual image and video sexts, compared to those who did not, were more likely to report ≤5h of average sleep in the past 2weeks, relative to 8h of average sleep. There were no significant findings among boys and men. Conclusion Findings underscore that receiving non-consensual image and video sexts may negatively impact sleep among girls and women, which may be contextualised by trauma responses experienced because of gender-based sexual violence. Healthcare and mental health professionals should be made aware of this association to provide effective care to girls and women.


Asunto(s)
Conducta del Adolescente , Envío de Mensajes de Texto , Masculino , Humanos , Adolescente , Femenino , Adulto Joven , Duración del Sueño , Canadá , Conducta Sexual/psicología
2.
Nature ; 624(7991): 366-377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092913

RESUMEN

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Asunto(s)
Encéfalo , Metilación de ADN , Epigenoma , Multiómica , Análisis de la Célula Individual , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Conjuntos de Datos como Asunto , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Nature ; 624(7991): 355-365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092919

RESUMEN

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Asunto(s)
Encéfalo , Epigenómica , Vías Nerviosas , Neuronas , Animales , Ratones , Amígdala del Cerebelo , Encéfalo/citología , Encéfalo/metabolismo , Secuencia de Consenso , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Hipotálamo/citología , Mesencéfalo/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Rombencéfalo/citología , Análisis de la Célula Individual , Tálamo/citología , Factores de Transcripción/metabolismo
4.
Science ; 382(6667): eadf5357, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824674

RESUMEN

Delineating the gene-regulatory programs underlying complex cell types is fundamental for understanding brain function in health and disease. Here, we comprehensively examined human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in 517 thousand cells (399 thousand neurons and 118 thousand non-neurons) from 46 regions of three adult male brains. We identified 188 cell types and characterized their molecular signatures. Integrative analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin organization, and gene expression across cell types, cortical areas, and basal ganglia structures. We further developed single-cell methylation barcodes that reliably predict brain cell types using the methylation status of select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the complexity of cell-type-specific gene regulation in adult human brains.


Asunto(s)
Encéfalo , Metilación de ADN , Epigénesis Genética , Adulto , Humanos , Masculino , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/metabolismo , Genoma Humano , Análisis de la Célula Individual , Imagenología Tridimensional , Atlas como Asunto
5.
Nature ; 622(7982): 383-392, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731001

RESUMEN

CD8+ T cells are essential components of the immune response against viral infections and tumours, and are capable of eliminating infected and cancerous cells. However, when the antigen cannot be cleared, T cells enter a state known as exhaustion1. Although it is clear that chronic antigen contributes to CD8+ T cell exhaustion, less is known about how stress responses in tissues regulate T cell function. Here we show a new link between the stress-associated catecholamines and the progression of T cell exhaustion through the ß1-adrenergic receptor ADRB1. We identify that exhausted CD8+ T cells increase ADRB1 expression and that exposure of ADRB1+ T cells to catecholamines suppresses their cytokine production and proliferation. Exhausted CD8+ T cells cluster around sympathetic nerves in an ADRB1-dependent manner. Ablation of ß1-adrenergic signalling limits the progression of T cells towards the exhausted state in chronic infection and improves effector functions when combined with immune checkpoint blockade (ICB) in melanoma. In a pancreatic cancer model resistant to ICB, ß-blockers and ICB synergize to boost CD8+ T cell responses and induce the development of tissue-resident memory-like T cells. Malignant disease is associated with increased catecholamine levels in patients2,3, and our results establish a connection between the sympathetic stress response, tissue innervation and T cell exhaustion. Here, we uncover a new mechanism by which blocking ß-adrenergic signalling in CD8+ T cells rejuvenates anti-tumour functions.


Asunto(s)
Linfocitos T CD8-positivos , Catecolaminas , Receptores Adrenérgicos beta 1 , Sistema Nervioso Simpático , Agotamiento de Células T , Humanos , Antígenos/inmunología , Antígenos/metabolismo , Catecolaminas/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/terapia , Células T de Memoria/citología , Células T de Memoria/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Receptores Adrenérgicos beta 1/metabolismo , Sistema Nervioso Simpático/inmunología , Sistema Nervioso Simpático/fisiología , Estrés Fisiológico
6.
Immunity ; 56(9): 2152-2171.e13, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37582369

RESUMEN

Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Microglía , Humanos , Ratones , Animales , Redes Reguladoras de Genes , Encéfalo , Regulación de la Expresión Génica
7.
Immunity ; 56(9): 2086-2104.e8, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572655

RESUMEN

The limited efficacy of immunotherapies against glioblastoma underscores the urgency of better understanding immunity in the central nervous system. We found that treatment with αCTLA-4, but not αPD-1, prolonged survival in a mouse model of mesenchymal-like glioblastoma. This effect was lost upon the depletion of CD4+ T cells but not CD8+ T cells. αCTLA-4 treatment increased frequencies of intratumoral IFNγ-producing CD4+ T cells, and IFNγ blockade negated the therapeutic impact of αCTLA-4. The anti-tumor activity of CD4+ T cells did not require tumor-intrinsic MHC-II expression but rather required conventional dendritic cells as well as MHC-II expression on microglia. CD4+ T cells interacted directly with microglia, promoting IFNγ-dependent microglia activation and phagocytosis via the AXL/MER tyrosine kinase receptors, which were necessary for tumor suppression. Thus, αCTLA-4 blockade in mesenchymal-like glioblastoma promotes a CD4+ T cell-microglia circuit wherein IFNγ triggers microglia activation and phagocytosis and microglia in turn act as antigen-presenting cells fueling the CD4+ T cell response.


Asunto(s)
Glioblastoma , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Antígeno CTLA-4 , Células TH1 , Microglía , Linfocitos T CD8-positivos , Fagocitosis , Células Dendríticas , Linfocitos T CD4-Positivos
8.
Immunity ; 56(6): 1303-1319.e5, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315534

RESUMEN

CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states.


Asunto(s)
Linfocitos T CD8-positivos , Secuencias Reguladoras de Ácidos Nucleicos , Cromatina , Nucleosomas , Antivirales
9.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131654

RESUMEN

Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions of differentially methylated regions (DMRs) across the genome, representing potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation and topology information into anatomical structures more precisely than our dissections. Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, highly associated with DNA methylation and transcription changes. Brain-wide cell type comparison allowed us to build a regulatory model for each gene, linking transcription factors, DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and regulatory genome diversity.

10.
Am J Hum Genet ; 110(4): 703-714, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36990085

RESUMEN

GATA3 is essential for T cell differentiation and is surrounded by genome-wide association study (GWAS) hits for immune traits. Interpretation of these GWAS hits is challenging because gene expression quantitative trait locus (eQTL) studies lack power to detect variants with small effects on gene expression in specific cell types and the genome region containing GATA3 contains dozens of potential regulatory sequences. To map regulatory sequences for GATA3, we performed a high-throughput tiling deletion screen of a 2 Mb genome region in Jurkat T cells. This revealed 23 candidate regulatory sequences, all but one of which is within the same topological-associating domain (TAD) as GATA3. We then performed a lower-throughput deletion screen to precisely map regulatory sequences in primary T helper 2 (Th2) cells. We tested 25 sequences with ∼100 bp deletions and validated five of the strongest hits with independent deletion experiments. Additionally, we fine-mapped GWAS hits for allergic diseases in a distal regulatory element, 1 Mb downstream of GATA3, and identified 14 candidate causal variants. Small deletions spanning the candidate variant rs725861 decreased GATA3 levels in Th2 cells, and luciferase reporter assays showed regulatory differences between its two alleles, suggesting a causal mechanism for this variant in allergic diseases. Our study demonstrates the power of integrating GWAS signals with deletion mapping and identifies critical regulatory sequences for GATA3.


Asunto(s)
Elementos de Facilitación Genéticos , Factor de Transcripción GATA3 , Hipersensibilidad , Secuencias Reguladoras de Ácidos Nucleicos , Linfocitos T , Humanos , Alelos , Factor de Transcripción GATA3/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Hipersensibilidad/genética , Mapeo Cromosómico , Eliminación de Gen
11.
Plant Cell ; 34(9): 3261-3279, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35666176

RESUMEN

Like other complex multicellular organisms, plants are composed of different cell types with specialized shapes and functions. For example, most laminar leaves consist of multiple photosynthetic cell types. These cell types include the palisade mesophyll, which typically forms one or more cell layers on the adaxial side of the leaf. Despite their importance for photosynthesis, we know little about how palisade cells differ at the molecular level from other photosynthetic cell types. To this end, we have used a combination of cell-specific profiling using fluorescence-activated cell sorting and single-cell RNA-sequencing methods to generate a transcriptional blueprint of the palisade mesophyll in Arabidopsis thaliana leaves. We find that despite their unique morphology, palisade cells are otherwise transcriptionally similar to other photosynthetic cell types. Nevertheless, we show that some genes in the phenylpropanoid biosynthesis pathway have both palisade-enriched expression and are light-regulated. Phenylpropanoid gene activity in the palisade was required for production of the ultraviolet (UV)-B protectant sinapoylmalate, which may protect the palisade and/or other leaf cells against damaging UV light. These findings improve our understanding of how different photosynthetic cell types in the leaf can function uniquely to optimize leaf performance, despite their transcriptional similarities.


Asunto(s)
Arabidopsis , Rayos Ultravioleta , Luz , Fotosíntesis , Hojas de la Planta
12.
Nature ; 598(7879): 120-128, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616061

RESUMEN

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Asunto(s)
Encéfalo/citología , Metilación de ADN , Epigenoma , Epigenómica , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Animales , Atlas como Asunto , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/química , Citosina/metabolismo , Conjuntos de Datos como Asunto , Giro Dentado/citología , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Vías Nerviosas , Neuronas/citología
13.
Nature ; 598(7879): 167-173, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616065

RESUMEN

Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Epigenoma , Epigenómica , Vías Nerviosas , Neuronas/clasificación , Neuronas/metabolismo , Animales , Mapeo Encefálico , Femenino , Masculino , Ratones , Neuronas/citología
14.
Nat Immunol ; 22(5): 586-594, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33859405

RESUMEN

Two microglial TAM receptor tyrosine kinases, Axl and Mer, have been linked to Alzheimer's disease, but their roles in disease have not been tested experimentally. We find that in Alzheimer's disease and its mouse models, induced expression of Axl and Mer in amyloid plaque-associated microglia was coupled to induced plaque decoration by the TAM ligand Gas6 and its co-ligand phosphatidylserine. In the APP/PS1 mouse model of Alzheimer's disease, genetic ablation of Axl and Mer resulted in microglia that were unable to normally detect, respond to, organize or phagocytose amyloid-ß plaques. These major deficits notwithstanding, TAM-deficient APP/PS1 mice developed fewer dense-core plaques than APP/PS1 mice with normal microglia. Our findings reveal that the TAM system is an essential mediator of microglial recognition and engulfment of amyloid plaques and that TAM-driven microglial phagocytosis does not inhibit, but rather promotes, dense-core plaque development.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Microglía/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Microscopía Intravital , Masculino , Ratones , Ratones Noqueados , Microglía/inmunología , Microscopía Confocal , Microscopía de Fluorescencia por Excitación Multifotónica , Fagocitosis/inmunología , Presenilina-1/genética , Proteínas Proto-Oncogénicas/genética , RNA-Seq , Proteínas Tirosina Quinasas Receptoras/genética , Análisis de la Célula Individual , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa del Receptor Axl
16.
Nature ; 586(7830): 606-611, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814902

RESUMEN

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Evasión Inmune , Islotes Pancreáticos/citología , Islotes Pancreáticos/inmunología , Organoides/citología , Organoides/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Epigénesis Genética , Femenino , Glucosa/metabolismo , Rechazo de Injerto , Xenoinjertos , Homeostasis , Humanos , Tolerancia Inmunológica , Secreción de Insulina , Trasplante de Islotes Pancreáticos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organoides/trasplante , Linfocitos T/citología , Linfocitos T/inmunología , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt4/metabolismo , Proteína Wnt4/farmacología
17.
Gastroenterology ; 159(5): 1866-1881.e8, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32717220

RESUMEN

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis. METHODS: We performed studies with LSL-KrasG12D/+;Ptf1aCre/+ mice (KC; develop pancreatic tumors), KC mice crossed with mice with pancreatic disruption of Pou2f3 (KPouC mice; do not develop tuft cells), or mice with pancreatic disruption of the hematopoietic prostaglandin D synthase gene (Hpgds, KHC mice) and wild-type mice. Mice were allowed to age or were given caerulein to induce pancreatitis; pancreata were collected and analyzed by histology, immunohistochemistry, RNA sequencing, ultrastructural microscopy, and metabolic profiling. We performed laser-capture dissection and RNA-sequencing analysis of pancreatic tissues from 26 patients with pancreatic intraepithelial neoplasia (PanIN), 19 patients with intraductal papillary mucinous neoplasms (IPMNs), and 197 patients with PDA. RESULTS: Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D2 than wild-type mice. Pancreas-specific deletion of POU2F3 in KC mice (KPouC mice) resulted in a loss of tuft cells and accelerated tumorigenesis. KPouC mice had increased fibrosis and activation of immune cells after administration of caerulein. Pancreata from KPouC and KHC mice had significantly lower levels of prostaglandin D2, compared with KC mice, and significantly increased numbers of PanINs and PDAs. KPouC and KHC mice had increased pancreatic injury after administration of caerulein, significantly less normal tissue, more extracellular matrix deposition, and higher PanIN grade than KC mice. Human PanIN and intraductal papillary mucinous neoplasm had gene expression signatures associated with tuft cells and increased expression of Hpgds messenger RNA compared with PDA. CONCLUSIONS: In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D2. These data are consistent with the hypothesis that tuft cells are a metaplasia-induced tumor attenuating cell type.


Asunto(s)
Carcinoma Ductal Pancreático/prevención & control , Transformación Celular Neoplásica/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/prevención & control , Prostaglandina D2/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Ceruletida , Modelos Animales de Enfermedad , Metabolismo Energético , Fibrosis , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Ratones Transgénicos , Mutación , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/metabolismo , Pancreatitis/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Front Physiol ; 11: 88, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116793

RESUMEN

Chronic pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma (PDA), is a serious, widespread medical condition characterized by inflammation, fibrosis, and acinar to ductal metaplasia (ADM). ADM is a cell type transdifferentiation event where pancreatic acinar cells become ductal-like under conditions of injury or oncogenic mutation. Here, we show that chronic pancreatitis and ADM in genetically wild type mice results in the formation of a significant population of chemosensory tuft cells. Transcriptomic analyses of pancreatitis tuft cells identify expression of inflammatory mediators, consistent with a role for tuft cells in injury progression and/or resolution. Though similar to tuft cell populations in other organs and disease systems, we identified a number of key differences that suggest context-specific tuft cell functions. We evaluated seven different mouse strains for tuft cell formation in response to chronic injury and identified significant heterogeneity reflecting varying proclivity for epithelial plasticity between strains. These results have interesting implications in the role of epithelial plasticity and heterogeneity in pancreatitis and highlight the importance of mouse strain selection when modeling human disease.

19.
Science ; 366(6469): 1134-1139, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31727856

RESUMEN

Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Elementos de Facilitación Genéticos/genética , Variación Genética , Microglía/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Proteínas Supresoras de Tumor/genética , Células Cultivadas , Cromatina/metabolismo , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Eliminación de Secuencia
20.
Nat Methods ; 16(10): 999-1006, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501549

RESUMEN

Dynamic three-dimensional chromatin conformation is a critical mechanism for gene regulation during development and disease. Despite this, profiling of three-dimensional genome structure from complex tissues with cell-type specific resolution remains challenging. Recent efforts have demonstrated that cell-type specific epigenomic features can be resolved in complex tissues using single-cell assays. However, it remains unclear whether single-cell chromatin conformation capture (3C) or Hi-C profiles can effectively identify cell types and reconstruct cell-type specific chromatin conformation maps. To address these challenges, we have developed single-nucleus methyl-3C sequencing to capture chromatin organization and DNA methylation information and robustly separate heterogeneous cell types. Applying this method to >4,200 single human brain prefrontal cortex cells, we reconstruct cell-type specific chromatin conformation maps from 14 cortical cell types. These datasets reveal the genome-wide association between cell-type specific chromatin conformation and differential DNA methylation, suggesting pervasive interactions between epigenetic processes regulating gene expression.


Asunto(s)
Metilación de ADN , Genoma Humano , Análisis de la Célula Individual , Algoritmos , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Epigénesis Genética , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA