Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456804

RESUMEN

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Endocr Pract ; 30(2): 122-127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37952581

RESUMEN

OBJECTIVE: People with diabetes mellitus, particularly those with limited access to longitudinal care, frequently present to the emergency department (ED). Continuous glucose monitoring (CGM) has been shown to improve outcomes in ambulatory settings, so we hypothesized that it would be beneficial if initiated upon ED discharge. METHODS: We randomized adults with diabetes who were seen in the ED for hypo- or hyperglycemia to either 14 days of flash CGM or care coordination alone. All participants were scheduled to follow up in our diabetes specialty clinic. Outcomes included clinic attendance, the 3-month change in hemoglobin A1c, and repeat ED utilization. RESULTS: We recruited 30 participants, including 13 with newly diagnosed diabetes. All but one (97%) had type 2 diabetes. We found no significant difference between the CGM (n = 16) and control (n = 14) groups in terms of clinic attendance (75 vs 64%, P = .61) or repeat ED utilization (31 vs 50%, P = .35), although our power was low. The absolute reduction in A1c was greater in the CGM group (5.2 vs 2.4%, P = .08). Among newly diagnosed participants for whom we had data, 7 out of 7 in the CGM group had a follow-up A1c under 7% compared to 1 out of 3 in the control group (P = .03). Over 90% of patients and providers found the CGM useful. CONCLUSIONS: Our data demonstrate the feasibility of starting CGM in the ED, a valuable setting for engaging difficult-to-reach patients. Our pilot study was limited by its small sample size, however, as recruitment in the ED can be challenging.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hipoglucemia , Adulto , Humanos , Glucemia , Hemoglobina Glucada , Hipoglucemiantes , Hipoglucemia/diagnóstico , Proyectos Piloto , Diabetes Mellitus Tipo 2/terapia , Automonitorización de la Glucosa Sanguínea , Monitoreo Continuo de Glucosa , Alta del Paciente
3.
Clin Cancer Res ; 30(7): 1338-1351, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967136

RESUMEN

PURPOSE: We evaluated the properties and activity of AZD9574, a blood-brain barrier (BBB) penetrant selective inhibitor of PARP1, and assessed its efficacy and safety alone and in combination with temozolomide (TMZ) in preclinical models. EXPERIMENTAL DESIGN: AZD9574 was interrogated in vitro for selectivity, PARylation inhibition, PARP-DNA trapping, the ability to cross the BBB, and the potential to inhibit cancer cell proliferation. In vivo efficacy was determined using subcutaneous as well as intracranial mouse xenograft models. Mouse, rat, and monkey were used to assess AZD9574 BBB penetration and rat models were used to evaluate potential hematotoxicity for AZD9574 monotherapy and the TMZ combination. RESULTS: AZD9574 demonstrated PARP1-selectivity in fluorescence anisotropy, PARylation, and PARP-DNA trapping assays and in vivo experiments demonstrated BBB penetration. AZD9574 showed potent single agent efficacy in preclinical models with homologous recombination repair deficiency in vitro and in vivo. In an O6-methylguanine-DNA methyltransferase (MGMT)-methylated orthotopic glioma model, AZD9574 in combination with TMZ was superior in extending the survival of tumor-bearing mice compared with TMZ alone. CONCLUSIONS: The combination of three key features-PARP1 selectivity, PARP1 trapping profile, and high central nervous system penetration in a single molecule-supports the development of AZD9574 as the best-in-class PARP inhibitor for the treatment of primary and secondary brain tumors. As documented by in vitro and in vivo studies, AZD9574 shows robust anticancer efficacy as a single agent as well as in combination with TMZ. AZD9574 is currently in a phase I trial (NCT05417594). See related commentary by Lynce and Lin, p. 1217.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Humanos , Ratones , Ratas , Antineoplásicos Alquilantes/farmacología , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , ADN , Glioma/tratamiento farmacológico , Glioma/patología , O(6)-Metilguanina-ADN Metiltransferasa/genética , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Treat Res ; 186: 25-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37978129

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) represent the first medicines based on the targeting of the DNA damage response (DDR). PARPi have become standard of care for first-line maintenance treatment in ovarian cancer and have also been approved in other cancer indications including breast, pancreatic and prostate. Despite their efficacy, resistance to PARPi has been reported clinically and represents a growing patient population with unmet clinical need. Here, we describe the various mechanisms of PARPi resistance that have been identified in pre-clinical models and in the clinic.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Masculino , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Antineoplásicos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Mama
5.
NPJ Breast Cancer ; 9(1): 68, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582853

RESUMEN

Novel therapeutic strategies that can effectively combine with immunotherapies are needed in the treatment of triple-negative breast cancer (TNBC). We demonstrate that combined PARP and WEE1 inhibition are synergistic in controlling tumour growth in BRCA1/2 wild-type TNBC preclinical models. The PARP inhibitor (PARPi) olaparib combined with the WEE1 inhibitor (WEE1i) adavosertib triggered increases in anti-tumour immune responses, including STING pathway activation. Combinations with a STING agonist resulted in further improved durable tumour regression and significant improvements in survival outcomes in murine tumour models of BRCA1/2 wild-type TNBC. In addition, we have identified baseline tumour-infiltrating lymphocyte (TIL) levels as a potential predictive biomarker of response to PARPi, WEE1i and immunotherapies in BRCA1/2 wild-type TNBC.

6.
Cell Rep ; 42(5): 112484, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37163373

RESUMEN

The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity. These effects are independent of PSMC3IP/MND1's role in mitotic alternative lengthening of telomeres. PSMC3IP- or MND1-depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Epistasis between PSMC3IP-MND1 and BRCA1/BRCA2 defects suggest that abrogated D loop formation is the cause of PARPi sensitivity. Wild-type PSMC3IP reverses PARPi sensitivity, whereas a PSMC3IP p.Glu201del mutant associated with D loop defects and ovarian dysgenesis does not. These observations suggest that meiotic proteins such as MND1 and PSMC3IP have a greater role in mitotic DNA repair.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN , Daño del ADN , Proteína BRCA1/genética , Reparación del ADN por Recombinación , Línea Celular Tumoral
7.
Clin Cancer Res ; 28(20): 4536-4550, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35921524

RESUMEN

PURPOSE: PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN: We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS: Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS: Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/genética , Biomarcadores , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Humanos , Nucleósidos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
8.
Clin Cancer Res ; 28(21): 4724-4736, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929986

RESUMEN

PURPOSE: We hypothesized that inhibition and trapping of PARP1 alone would be sufficient to achieve antitumor activity. In particular, we aimed to achieve selectivity over PARP2, which has been shown to play a role in the survival of hematopoietic/stem progenitor cells in animal models. We developed AZD5305 with the aim of achieving improved clinical efficacy and wider therapeutic window. This next-generation PARP inhibitor (PARPi) could provide a paradigm shift in clinical outcomes achieved by first-generation PARPi, particularly in combination. EXPERIMENTAL DESIGN: AZD5305 was tested in vitro for PARylation inhibition, PARP-DNA trapping, and antiproliferative abilities. In vivo efficacy was determined in mouse xenograft and PDX models. The potential for hematologic toxicity was evaluated in rat models, as monotherapy and combination. RESULTS: AZD5305 is a highly potent and selective inhibitor of PARP1 with 500-fold selectivity for PARP1 over PARP2. AZD5305 inhibits growth in cells with deficiencies in DNA repair, with minimal/no effects in other cells. Unlike first-generation PARPi, AZD5305 has minimal effects on hematologic parameters in a rat pre-clinical model at predicted clinically efficacious exposures. Animal models treated with AZD5305 at doses ≥0.1 mg/kg once daily achieved greater depth of tumor regression compared to olaparib 100 mg/kg once daily, and longer duration of response. CONCLUSIONS: AZD5305 potently and selectively inhibits PARP1 resulting in excellent antiproliferative activity and unprecedented selectivity for DNA repair deficient versus proficient cells. These data confirm the hypothesis that targeting only PARP1 can retain the therapeutic benefit of nonselective PARPi, while reducing potential for hematotoxicity. AZD5305 is currently in phase I trials (NCT04644068).


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Ratones , Ratas , Animales , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ftalazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1 , Antineoplásicos/farmacología , Reparación del ADN
9.
Oncoimmunology ; 11(1): 2083755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756843

RESUMEN

PARP inhibitors are synthetically lethal with BRCA1/2 mutations, and in this setting, accumulation of DNA damage leads to cell death. Because increased DNA damage and subsequent immune activation can prime an anti-tumor immune response, we studied the impact of olaparib ± immune checkpoint blockade (ICB) on anti-tumor activity and the immune microenvironment. Concurrent combination of olaparib, at clinically relevant exposures, with ICB gave durable and deeper anti-tumor activity in the Brca1m BR5 model vs. monotherapies. Olaparib and combination treatment modulated the immune microenvironment, including increases in CD8+ T cells and NK cells, and upregulation of immune pathways, including type I IFN and STING signaling. Olaparib also induced a dose-dependent upregulation of immune pathways, including JAK/STAT, STING and type I IFN, in the tumor cell compartment of a BRCA1m (HBCx-10) but not a BRCA WT (HBCx-9) breast PDX model. In vitro, olaparib induced BRCAm tumor cell-specific dendritic cell transactivation. Relevance to human disease was assessed using patient samples from the MEDIOLA (NCT02734004) trial, which showed increased type I IFN, STING, and JAK/STAT pathway expression following olaparib treatment, in line with preclinical findings. These data together provide evidence for a mechanism and schedule underpinning potential benefit of ICB combination with olaparib.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunidad , Quinasas Janus/metabolismo , Quinasas Janus/farmacología , Quinasas Janus/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/farmacología , Factores de Transcripción STAT/uso terapéutico , Transducción de Señal , Microambiente Tumoral
10.
Genome Med ; 14(1): 70, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35765100

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a worldwide scourge caused by both genetic and environmental risk factors that disproportionately afflicts communities of color. Leveraging existing large-scale genome-wide association studies (GWAS), polygenic risk scores (PRS) have shown promise to complement established clinical risk factors and intervention paradigms, and improve early diagnosis and prevention of T2D. However, to date, T2D PRS have been most widely developed and validated in individuals of European descent. Comprehensive assessment of T2D PRS in non-European populations is critical for equitable deployment of PRS to clinical practice that benefits global populations. METHODS: We integrated T2D GWAS in European, African, and East Asian populations to construct a trans-ancestry T2D PRS using a newly developed Bayesian polygenic modeling method, and assessed the prediction accuracy of the PRS in the multi-ethnic Electronic Medical Records and Genomics (eMERGE) study (11,945 cases; 57,694 controls), four Black cohorts (5137 cases; 9657 controls), and the Taiwan Biobank (4570 cases; 84,996 controls). We additionally evaluated a post hoc ancestry adjustment method that can express the polygenic risk on the same scale across ancestrally diverse individuals and facilitate the clinical implementation of the PRS in prospective cohorts. RESULTS: The trans-ancestry PRS was significantly associated with T2D status across the ancestral groups examined. The top 2% of the PRS distribution can identify individuals with an approximately 2.5-4.5-fold of increase in T2D risk, which corresponds to the increased risk of T2D for first-degree relatives. The post hoc ancestry adjustment method eliminated major distributional differences in the PRS across ancestries without compromising its predictive performance. CONCLUSIONS: By integrating T2D GWAS from multiple populations, we developed and validated a trans-ancestry PRS, and demonstrated its potential as a meaningful index of risk among diverse patients in clinical settings. Our efforts represent the first step towards the implementation of the T2D PRS into routine healthcare.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Teorema de Bayes , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Estudios Prospectivos , Factores de Riesgo
11.
Cancer Res ; 82(8): 1646-1657, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35425960

RESUMEN

PARP inhibitors (PARPi) are approved drugs for platinum-sensitive, high-grade serous ovarian cancer (HGSOC) and for breast, prostate, and pancreatic cancers (PaC) harboring genetic alterations impairing homologous recombination repair (HRR). Detection of nuclear RAD51 foci in tumor cells is a marker of HRR functionality, and we previously established a test to detect RAD51 nuclear foci. Here, we aimed to validate the RAD51 score cut off and compare the performance of this test to other HRR deficiency (HRD) detection methods. Laboratory models from BRCA1/BRCA2-associated breast cancer, HGSOC, and PaC were developed and evaluated for their response to PARPi and cisplatin. HRD in these models and patient samples was evaluated by DNA sequencing of HRR genes, genomic HRD tests, and RAD51 foci detection. We established patient-derived xenograft models from breast cancer (n = 103), HGSOC (n = 4), and PaC (n = 2) that recapitulated patient HRD status and treatment response. The RAD51 test showed higher accuracy than HRR gene mutations and genomic HRD analysis for predicting PARPi response (95%, 67%, and 71%, respectively). RAD51 detection captured dynamic changes in HRR status upon acquisition of PARPi resistance. The accuracy of the RAD51 test was similar to HRR gene mutations for predicting platinum response. The predefined RAD51 score cut off was validated, and the high predictive value of the RAD51 test in preclinical models was confirmed. These results collectively support pursuing clinical assessment of the RAD51 test in patient samples from randomized trials testing PARPi or platinum-based therapies. SIGNIFICANCE: This work demonstrates the high accuracy of a histopathology-based test based on the detection of RAD51 nuclear foci in predicting response to PARPi and cisplatin.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Epitelial de Ovario/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Recombinación Homóloga/genética , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinasa Rad51/genética
12.
Cancer Res ; 82(6): 1140-1152, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35078817

RESUMEN

AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE: This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carboplatino , Humanos , Indoles , Irinotecán , Morfolinas/farmacología , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Sulfonamidas/farmacología , Sulfóxidos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
13.
Cancer Res Commun ; 2(10): 1244-1254, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36969741

RESUMEN

PARP inhibitors (PARPi) are currently indicated for the treatment of ovarian, breast, pancreatic, and prostate cancers harboring mutations in the tumor suppressor genes BRCA1 or BRCA2. In the case of ovarian and prostate cancers, their classification as homologous recombination repair (HRR) deficient (HRD) or mutated also makes PARPi an available treatment option beyond BRCA1 or BRCA2 mutational status. However, identification of the most relevant genetic alterations driving the HRD phenotype has proven difficult and recent data have shown that other genetic alterations not affecting HRR are also capable of driving PARPi responses. To gain insight into the genetics driving PARPi sensitivity, we performed CRISPR-Cas9 loss-of-function screens in six PARPi-insensitive cell lines and combined the output with published PARPi datasets from eight additional cell lines. Ensuing exploration of the data identified 110 genes whose inactivation is strongly linked to sensitivity to PARPi. Parallel cell line generation of isogenic gene knockouts in ovarian and prostate cancer cell lines identified that inactivation of core HRR factors is required for driving in vitro PARPi responses comparable with the ones observed for BRCA1 or BRCA2 mutations. Moreover, pan-cancer genetic, transcriptomic, and epigenetic data analyses of these 110 genes highlight the ones most frequently inactivated in tumors, making this study a valuable resource for prospective identification of potential PARPi-responsive patient populations. Importantly, our investigations uncover XRCC3 gene silencing as a potential new prognostic biomarker of PARPi sensitivity in prostate cancer. Significance: This study identifies tumor genetic backgrounds where to expand the use of PARPis beyond mutations in BRCA1 or BRCA2. This is achieved by combining the output of unbiased genome-wide loss-of-function CRISPR-Cas9 genetic screens with bioinformatics analysis of biallelic losses of the identified genes in public tumor datasets, unveiling loss of the DNA repair gene XRCC3 as a potential biomarker of PARPi sensitivity in prostate cancer.


Asunto(s)
Neoplasias Ováricas , Neoplasias de la Próstata , Humanos , Masculino , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Estudios Prospectivos , Neoplasias de la Próstata/tratamiento farmacológico , Resistencia a Antineoplásicos , Biomarcadores
14.
Diabetes ; 71(3): 554-565, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862199

RESUMEN

Most genome-wide association studies (GWAS) of complex traits are performed using models with additive allelic effects. Hundreds of loci associated with type 2 diabetes have been identified using this approach. Additive models, however, can miss loci with recessive effects, thereby leaving potentially important genes undiscovered. We conducted the largest GWAS meta-analysis using a recessive model for type 2 diabetes. Our discovery sample included 33,139 case subjects and 279,507 control subjects from 7 European-ancestry cohorts, including the UK Biobank. We identified 51 loci associated with type 2 diabetes, including five variants undetected by prior additive analyses. Two of the five variants had minor allele frequency of <5% and were each associated with more than a doubled risk in homozygous carriers. Using two additional cohorts, FinnGen and a Danish cohort, we replicated three of the variants, including one of the low-frequency variants, rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-3.19; P = 1 × 10-16) and a stronger effect in men than in women (for interaction, P = 7 × 10-7). The signal was associated with multiple diabetes-related traits, with homozygous carriers showing a 10% decrease in LDL cholesterol and a 20% increase in triglycerides; colocalization analysis linked this signal to reduced expression of the nearby PELO gene. These results demonstrate that recessive models, when compared with GWAS using the additive approach, can identify novel loci, including large-effect variants with pathophysiological consequences relevant to type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Genes Recesivos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Adulto , LDL-Colesterol/sangre , Europa (Continente)/etnología , Femenino , Frecuencia de los Genes , Homocigoto , Humanos , Masculino , Metaboloma/genética , Persona de Mediana Edad , Mutación , Factores Sexuales , Triglicéridos/sangre
15.
Cancer J ; 27(6): 521-528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34904816

RESUMEN

ABSTRACT: Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the therapeutic landscape for advanced ovarian cancer and expanded treatment options for other tumor types, including breast, pancreas, and prostate cancer. Yet, despite the success of PARP inhibitors in our current therapeutic armamentarium, not all patients benefit because of primary resistance, whereas different acquired resistance mechanisms can lead to disease progression on therapy. In addition, the toxicity profile of PARP inhibitors, primarily myelosuppression, has led to adverse events in a proportion of patients as monotherapy, and has limited the use of PARP inhibitors for certain rational combination strategies, such as chemotherapy and targeted therapy regimens. Currently approved PARP inhibitors are essentially equipotent against PARP1 and PARP2 enzymes. In this review, we describe the development of next-generation PARP1-selective inhibitors that have entered phase I clinical trials. These inhibitors have demonstrated increased PARP1 inhibitory potency and exquisitely high PARP1 selectivity in preclinical studies-features that may lead to improved clinical efficacy and a wider therapeutic window. First-in-human clinical trials seeking to establish the safety, tolerability, and recommended phase II dose, as well as antitumor activity of these novel agents, have commenced. If successful, this next-generation of PARP1-selective agents promises to build on the succeses of current PARP inhibitor treatment paradigms in cancer medicine.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
J Med Chem ; 64(19): 14498-14512, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34570508

RESUMEN

Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity. Recent literature has demonstrated that PARP1 inhibition and PARP1-DNA trapping are key for driving efficacy in a BRCA mutant background. Herein, we describe the structure- and property-based design of 25 (AZD5305), a potent and selective PARP1 inhibitor and PARP1-DNA trapper with excellent in vivo efficacy in a BRCA mutant HBCx-17 PDX model. Compound 25 is highly selective for PARP1 over other PARP family members, with good secondary pharmacology and physicochemical properties and excellent pharmacokinetics in preclinical species, with reduced effects on human bone marrow progenitor cells in vitro.


Asunto(s)
ADN , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Humanos , Cristalografía por Rayos X , ADN/química , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especificidad por Sustrato
17.
Nucleic Acids Res ; 49(15): 8665-8683, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329458

RESUMEN

The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ciclina C/genética , Quinasa 8 Dependiente de Ciclina/genética , Transcripción Genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Humanos , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
18.
Mol Cancer Ther ; 20(9): 1614-1626, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34158341

RESUMEN

Radiotherapy is an effective anticancer treatment, but combinations with targeted agents that maximize efficacy while sparing normal tissue are needed. Here, we assess the radiopotentiation profiles of DNA damage response inhibitors (DDRi) olaparib (PARP1/2), ceralasertib (ATR), adavosertib (WEE1), AZD0156 (ATM), and KU-60648 (DNA-PK). We performed a radiotherapy combination screen and assessed how drug concentration and cellular DDR deficiencies influence the radiopotentiation ability of DDRi. We pre-selected six lung cancer cell lines with different genetic/signaling aberrations (including mutations in TP53 and ATM) and assessed multiple concentrations of DDRi in combination with a fixed radiotherapy dose by clonogenic assay. The effective concentration of DDRi in radiotherapy combinations is lower than that required for single-agent efficacy. This has the potential to be exploited further in the context of DDR deficiencies to increase therapeutic index and we demonstrate that low concentrations of AZD0156 preferentially sensitized p53-deficient cells. Moreover, testing multiple concentrations of DDRi in radiotherapy combinations indicated that olaparib, ceralasertib, and adavosertib have a desirable safety profile showing moderate increases in radiotherapy dose enhancement with increasing inhibitor concentration. Small increases in concentration of AZD0156 and particularly KU-60648, however, result in steep increases in dose enhancement. Radiopotentiation profiling can inform on effective drug doses required for radiosensitization in relation to biomarkers, providing an opportunity to increase therapeutic index. Moreover, multiple concentration testing demonstrates a relationship between drug concentration and radiotherapy effect that provides valuable insights that, with future in vivo validation, can guide dose-escalation strategies in clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Reparación del ADN , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis , Proliferación Celular , Humanos , Neoplasias Pulmonares/patología , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Quinolinas/farmacología , Células Tumorales Cultivadas
19.
Arthritis Rheumatol ; 73(11): 2096-2104, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33982892

RESUMEN

OBJECTIVE: Hyperuricemia is closely associated with insulin resistance syndrome (and its many cardiometabolic sequelae); however, whether they are causally related has long been debated. We undertook this study to investigate the potential causal nature and direction between insulin resistance and hyperuricemia, along with gout, by using bidirectional Mendelian randomization (MR) analyses. METHODS: We used genome-wide association data (n = 288,649 for serum urate [SU] concentration; n = 763,813 for gout risk; n = 153,525 for fasting insulin) to select genetic instruments for 2-sample MR analyses, using multiple MR methods to address potential pleiotropic associations. We then used individual-level, electronic medical record-linked data from the UK Biobank (n = 360,453 persons of European ancestry) to replicate our analyses via single-sample MR analysis. RESULTS: Genetically determined SU levels, whether inferred from a polygenic score or strong individual loci, were not associated with fasting insulin concentrations. In contrast, genetically determined fasting insulin concentrations were positively associated with SU levels (0.37 mg/dl per log-unit increase in fasting insulin [95% confidence interval (95% CI) 0.15, 0.58]; P = 0.001). This persisted in outlier-corrected (ß = 0.56 mg/dl [95% CI 0.45, 0.67]) and multivariable MR analyses adjusted for BMI (ß = 0.69 mg/dl [95% CI 0.53, 0.85]) (P < 0.001 for both). Polygenic scores for fasting insulin were also positively associated with SU level among individuals in the UK Biobank (P < 0.001). Findings for gout risk were bidirectionally consistent with those for SU level. CONCLUSION: These findings provide evidence to clarify core questions about the close association between hyperuricemia and insulin resistance syndrome: hyperinsulinemia leads to hyperuricemia but not the other way around. Reducing insulin resistance could lower the SU level and gout risk, whereas lowering the SU level (e.g., allopurinol treatment) is unlikely to mitigate insulin resistance and its cardiometabolic sequelae.


Asunto(s)
Hiperuricemia/genética , Resistencia a la Insulina/genética , Polimorfismo de Nucleótido Simple , Ácido Úrico/sangre , Adulto , Anciano , Femenino , Sitios Genéticos , Gota/sangre , Gota/genética , Humanos , Hiperuricemia/sangre , Insulina/genética , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad
20.
Br J Cancer ; 124(11): 1809-1819, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33742147

RESUMEN

BACKGROUND: The radiosensitising effect of the poly(ADP-ribose) polymerase inhibitor olaparib on tumours has been reported. However, its effect on normal tissues in combination with radiation has not been well studied. Herein, we investigated the therapeutic index of olaparib combined with hemithoracic radiation in a urethane-induced mouse lung cancer model. METHODS: To assess tolerability, A/J mice were treated with olaparib plus whole thorax radiation (13 Gy), body weight changes were monitored and normal tissue effects were assessed by histology. In anti-tumour (intervention) studies, A/J mice were injected with urethane to induce lung tumours, and were then treated with olaparib alone, left thorax radiation alone or the combination of olaparib plus left thorax radiation at 8 weeks (early intervention) or 18 weeks (late intervention) after urethane injection. Anti-tumour efficacy and normal tissue effects were assessed by visual inspection, magnetic resonance imaging and histology. RESULTS: Enhanced body weight loss and oesophageal toxicity were observed when olaparib was combined with whole thorax but not hemithorax radiation. In both the early and late intervention studies, olaparib increased the anti-tumour effects of hemithoracic irradiation without increasing lung toxicity. CONCLUSIONS: The addition of olaparib increased the therapeutic index of hemithoracic radiation in a mouse model of lung cancer.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Modelos Animales de Enfermedad , Femenino , Neoplasias Pulmonares/patología , Ratones , Ftalazinas/farmacología , Piperazinas/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Índice Terapéutico , Tórax/efectos de la radiación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...