Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biopreserv Biobank ; 19(4): 324-331, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33780631

RESUMEN

Introduction: Best practices dictate that biobanks ensure accurate determination of tumor content before supplying formalin-fixed, paraffin-embedded (FFPE) tissue samples to researchers for nucleic acid extraction and downstream molecular testing. It is advisable that trained and competent individuals, who understand the requirements of the downstream molecular tests, perform the microscopic morphological examination. However, the special skills, time, and costs associated with these assessments can be prohibitive, especially in large case cohorts requiring extensive pathological review. Determination of tumor content reliably by digital image analysis (DIA) could represent a significant advantage if validated, utilized, and deployed by biobanks. Materials and Methods: Whole slide digital scanned images of colorectal, lung, and breast cancer specimens were created. The scanned images were imported into the DIA software QuPath and digital annotations were completed by biobank technicians, under the direction of trained histopathology senior scientists. Automated cell detection was conducted and tumor epithelial cells were classified and quantified. Results: DIA scores were highly concordant with the manual assessment for 376 of 435 samples (86%). A detailed review of discordant cases indicated digital scores had a higher accuracy than the manual estimation. Conclusion: Automated digital quantification has the potential to replace visual estimations with reduced subjectivity and increased reliability compared with manual tumor estimations. We recommend the use of DIA by biobanks involved in provision of FFPE tissue samples, especially in large research studies requiring high volumes of cases to be analyzed.


Asunto(s)
Neoplasias , Programas Informáticos , Formaldehído , Humanos , Adhesión en Parafina , Reproducibilidad de los Resultados
2.
Oncotarget ; 8(55): 93392-93403, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29212158

RESUMEN

Immunohistochemistry remains the overwhelming technique of choice for test biomarker evaluation in both clinical or research settings when using formalin-fixed, paraffin embedded tissue sections. However, validations can be complex with significant issues about specificity, sensitivity and reproducibility. The vast array of commercially available antibodies from many vendors may also lead to non-standard approaches which are difficult to cross-reference. In contrast mRNA detection, by in situ hybridization (ISH) with sequence specific probes, offers a realistic alternative, with less validation steps and more stringent and reproducible assessment criteria. In the present study mRNA ISH was evaluated in prospectively and retrospectively collected FFPE samples within a cancer biobank setting. Three positive control probes, POLR2A, PPIB and UBC were applied to FFPE sections from a range of tumour types in FFPE whole-face (prospective collection) or TMA (retrospective collection) formats and evaluated semi-quantitatively and by image analysis. Results indicate that mRNA can be robustly evaluated by ISH in prospectively and retrospectively collected tissue samples. Furthermore, for 2 important test biomarkers, PD-L1 and c-MET, we show that mRNA ISH is a technology that can be applied with confidence in the majority of tissue samples because there are quantifiable levels of control probes indicating overall mRNA integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...