Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Npj Imaging ; 2(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939049

RESUMEN

In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 µm to 400 µm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.

2.
Chemosphere ; 313: 137300, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36414038

RESUMEN

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos/análisis , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
3.
Curr Med Res Opin ; 37(9): 1493-1500, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166150

RESUMEN

BACKGROUND: Patients with nonvalvular atrial fibrillation (NVAF) and type 2 diabetes are at risk of kidney, limb, and ophthalmic complications. We evaluated the rate of these complications and death in patients with NVAF and type 2 diabetes prescribed rivaroxaban or warfarin. METHODS: We analyzed Optum de-Identified electronic health record (EHR) data from 11/2010-12/2019. We included adults with NVAF and T2D newly initiated on rivaroxaban or warfarin with ≥12 months of prior EHR activity. Patients with another indication for anticoagulation, valve disease, history of end-stage renal disease, major adverse limb events (MALE), diabetic retinopathy or pregnancy were excluded. We evaluated the incidence rate of developing a composite outcome of >40% decrease in estimated glomerular filtration incidence rate (eGFR) from baseline, eGFR < 15 mL/minute/1.73 m2, need for dialysis or kidney transplant, MALE, diabetic retinopathy or death. Overlap weighting was used to balance baseline characteristics between cohorts while preserving sample size. Hazard ratios with 95% confidence intervals were calculated using propensity score-overlap weighted Cox regression. RESULTS: We included 24,912 rivaroxaban and 58,270 warfarin users. The mean ± standard deviation (SD) CHA2DS2VASc score was 4.3 ± 1.5 and modified HASBLED score was 1.5 ± 0.8. Thirty percent of rivaroxaban patients were started on 15 mg once daily, with the rest prescribed 20 mg once daily. Warfarin patients had a mean time in therapeutic range of 47 ± 28%. Patients were followed for a mean of 2.89 ± 1.95 years. Rivaroxaban was associated with a reduced hazard of the composite outcome (HR = 0.93, 95%CI = 0.91-0.95; absolute risk reduction = 1.97 events per 1000 patient-years; number needed-to-treat = 51) versus warfarin. Rivaroxaban was also associated with significant reductions in the relative hazard of > 40% decrease in eGFR from baseline (HR = 0.96), need for dialysis or renal transplant (HR = 0.81), and limb revascularization or major amputation (HR = 0.85). Death occurred at a lower incidence rate with rivaroxaban (HR = 0.92, 95%CI = 0.89-0.95). CONCLUSIONS: Rivaroxaban was associated with reduced incidence rates of kidney and limb complications, and death in NVAF patients with type 2 diabetes compared to warfarin. ClinicalTrials.gov Identifier: NCT04509193.


Asunto(s)
Anticoagulantes , Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Oftalmopatías , Enfermedades Renales , Rivaroxabán , Accidente Cerebrovascular , Warfarina , Anticoagulantes/efectos adversos , Anticoagulantes/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Dabigatrán , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Registros Electrónicos de Salud , Oftalmopatías/inducido químicamente , Humanos , Riñón , Enfermedades Renales/inducido químicamente , Estudios Retrospectivos , Rivaroxabán/efectos adversos , Resultado del Tratamiento , Warfarina/efectos adversos
4.
Appl Spectrosc ; 74(9): 1012-1047, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32249594

RESUMEN

Microplastics are of major concerns for society and is currently in the focus of legislators and administrations. A small number of measures to reduce or remove primary sources of microplastics to the environment are currently coming into effect. At the moment, they have not yet tackled important topics such as food safety. However, recent developments such as the 2018 bill in California are requesting the analysis of microplastics in drinking water by standardized operational protocols. Administrations and analytical labs are facing an emerging field of methods for sampling, extraction, and analysis of microplastics, which complicate the establishment of standardized operational protocols. In this review, the state of the currently applied identification and quantification tools for microplastics are evaluated providing a harmonized guideline for future standardized operational protocols to cover these types of bills. The main focus is on the naked eye detection, general optical microscopy, the application of dye staining, flow cytometry, Fourier transform infrared spectroscopy (FT-Ir) and microscopy, Raman spectroscopy and microscopy, thermal degradation by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) as well as thermo-extraction and desorption gas chromatography-mass spectrometry (TED-GC-MS). Additional techniques are highlighted as well as the combined application of the analytical techniques suggested. An outlook is given on the emerging aspect of nanoplastic analysis. In all cases, the methods were screened for limitations, field work abilities and, if possible, estimated costs and summarized into a recommendation for a workflow covering the demands of society, legislation, and administration in cost efficient but still detailed manner.

5.
Anal Chem ; 92(3): 2443-2451, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31939281

RESUMEN

As smaller particle sizes are increasingly included in microplastic research, it is critical to chemically characterize microparticles to identify whether particles are indeed microplastics. To increase the accessibility of methods for characterizing microparticles via Raman spectroscopy, we created an application-based library of Raman spectroscopy parameters specific to microplastics based on color, morphology, and size. We also created two spectral libraries that are representative of microplastics found in environmental samples. Here, we present SLoPP, a spectral library of plastic particles, consisting of 148 reference spectra, including a diversity of polymer types, colors, and morphologies. To account for the effects of aging on microplastics and associated changes to Raman spectra, we present a spectral library of plastic particles aged in the environment (SLoPP-E). SLoPP-E includes 113 spectra, including a diversity of types, colors, and morphologies. The microplastics used to make SLoPP-E include environmental samples obtained across a range of matrices, geographies, and time. Our libraries increase the likelihood of spectral matching for a broad range of microplastics because our libraries include plastics containing a range of additives and pigments that are not generally included in commercial libraries. When used in combination with commercial libraries of over 24 000 spectra, 63% of the top 5 matches across all particles tested (product and environmental) are from SLoPP and SLoPP-E. These tools were developed to improve the accessibility of microplastics research in response to a growing and multidisciplinary field, as well as to enhance data quality and consistency.

6.
J Chem Phys ; 136(23): 234303, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22779589

RESUMEN

UV laser-induced fluorescence and IR-UV fluorescence depletion studies have been used to characterize the intermolecular levels of the CN-Ar complex in the excited state correlating with CN B (2)Σ(+) + Ar. Additional CN-Ar features are identified to lower wavenumber than reported previously. Fluorescence depletion spectra are recorded to confirm that these CN-Ar features and other higher energy features in the B-X spectrum originate from a common ground state level. The UV depletion is induced by IR excitation of CN-Ar from the ground state zero-point level to a hindered internal rotor state (n(K) = 1(1)) in the CN overtone region. The lowest energy feature in the B-X spectrum at 25,714.1 cm(-1) is assigned as a transition to the zero-point level of the B state and also yields its binding energy, D(0) = 186(2) cm(-1), which is in excellent accord with theoretical predictions. The next feature approximately 40 cm(-1) higher is attributed to overlapping transitions to intermolecular levels with bend (v(b)(K)=1(1)) or stretch (v(s) = 1) excitation. Yet higher features (previously reported) are also assigned, based on their transition type and wavenumber, which are consistent with the intermolecular energy level pattern computed theoretically. Finally, the intensity profile of the lowest energy features in the B-X spectrum reflects the predicted change in the CN (B (2)Σ(+), X (2)Σ(+)) + Ar potentials upon electronic excitation from a weakly anisotropic potential about the linear N≡C-Ar configuration in the ground state to a more strongly bound linear C≡N-Ar structure in the excited B electronic state.

7.
J Chem Phys ; 136(23): 234304, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22779590

RESUMEN

The hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ar complex with two quanta of CN stretch (v(CN) = 2), along with its ground state (v(CN) = 0), have been characterized by IR-UV double resonance and UV spectroscopy. Analysis of rotationally structured bands enable n(K) assignments and reveal perturbations due to Coriolis coupling between two closely spaced hindered rotor states, n(K) = 1(1) and 1(0). A deperturbation analysis is carried out to derive accurate rotational constants and their associated CN center-of-mass to Ar bond lengths as well as the magnitude of the coupling. The energetic ordering and spacings of the CN-Ar hindered rotor states provide a direct experimental probe of the angular dependence of the CN X (2)Σ(+) + Ar potential and permit radially averaged anisotropy parameters (V(10) = 5.2 cm(-1) and V(20) = 3.2 cm(-1)) to be determined. This analysis indicates a relatively flat potential about a linear N≡C-Ar configuration with a barrier to CN internal rotation of only ~12 cm(-1). The angular potentials determined from experiment and ab initio theory are in good accord, although theory predicts a higher barrier to CN internal rotation. A similar approach yields the infrared spectrum of H(2)-CN in the CN overtone region, which exhibits a rotationally resolved Σ â† Σ parallel band that is consistent with theoretical predictions for ortho-H(2)-CN.

8.
J Chem Phys ; 134(18): 184308, 2011 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-21568507

RESUMEN

IR-UV double resonance spectroscopy has been used to characterize hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ne complex in its ground electronic state with various degrees of CN stretch (ν(CN)) excitation. Rotationally resolved infrared overtone spectra of the CN-Ne complex exhibit perturbations arising from Coriolis coupling between the closely spaced hindered rotor states (1(1) and 1(0)) with two quanta of CN stretch (ν(CN) = 2). A deperturbation analysis is used to obtain accurate rotational constants and associated average CN center-of-mass to Ne separation distances as well as the coupling strength. The energetic ordering and spacings of the hindered internal rotor states provide a direct reflection of the weakly anisotropic intermolecular potential between CN X (2)Σ(+) and Ne, with only an 8 cm(-1) barrier to CN internal rotation, from which radially averaged anisotropy parameters (V(10) and V(20)) are extracted that are consistent for ν(CN) = 0-3. Complementary ab initio calculation of the CN X (2)Σ(+) + Ne potential using MRCI+Q extrapolated to the complete one-electron basis set limit is compared with the experimentally derived anisotropy by optimizing the radial potential at each angle. Experiment and theory are in excellent accord, both indicating a bent minimum energy configuration and nearly free rotor behavior. Analogous experimental and theoretical studies of the CN-Ne complex upon electronic excitation to the CN B (2)Σ(+) state indicate a slightly more anisotropic potential with a linear CN-Ne minimum energy configuration. The results from these IR-UV double resonance studies are compared with prior electronic spectroscopy and theoretical studies of the CN-Ne system.

9.
J Phys Chem A ; 114(3): 1529-38, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19831340

RESUMEN

Infrared action spectroscopy is utilized to characterize the gas-phase, hydrogen-bonded H(2)O-HO complex, a primary interaction in the hydration of the hydroxyl radical. The OH radical stretch of the H(2)O-HO complex is identified at 3490 cm(-1), shifted 78 cm(-1) to lower frequency of the OH monomer transition. The stability of the complex, D(0) < or = 5.14 kcal mol(-1), is derived from the highest observed OH product channel in the associated product state distribution. The assignment is supported by high level ab initio calculations of the spectral shift of the binary complex from free OH and its dissociation energy, D(e)(CBS-infinity) = 5.6 kcal mol(-1). A second weaker feature, appearing 15 cm(-1) to lower frequency at 3475 cm(-1), is attributed to a hot band, the OH radical stretch originating from an out-of-plane H(2)O bending state, based on two-dimensional calculations of frequencies and strengths of transitions involving the coupled vibrational modes.

10.
Proc Natl Acad Sci U S A ; 105(35): 12678-83, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18678905

RESUMEN

The reaction of nitric acid with the hydroxyl radical influences the residence time of HONO(2) in the lower atmosphere. Prior studies [Brown SS, Burkholder JB, Talukdar RK, Ravishankara AR (2001) J Phys Chem A 105:1605-1614] have revealed unusual kinetic behavior for this reaction, including a negative temperature dependence, a complex pressure dependence, and an overall reaction rate strongly affected by isotopic substitution. This behavior suggested that the reaction occurs through an intermediate, theoretically predicted to be a hydrogen-bonded OH-HONO(2) complex in a six-membered ring-like configuration. In this study, the intermediate is generated directly by the association of photolytically generated OH radicals with HONO(2) and stabilized in a pulsed supersonic expansion. Infrared action spectroscopy is used to identify the intermediate by the OH radical stretch (nu(1)) and OH stretch of nitric acid (nu(2)) in the OH-HONO(2) complex. Two vibrational features are attributed to OH-HONO(2): a rotationally structured nu(1) band at 3516.8 cm(-1) and an extensively broadened nu(2) feature at 3260 cm(-1), both shifted from their respective monomers. These same transitions are identified for OD-DONO(2). Assignments of the features are based on their vibrational frequencies, analysis of rotational band structure, and comparison with complementary high level ab initio calculations. In addition, the OH (v = 0) product state distributions resulting from nu(1) and nu(2) excitation are used to determine the binding energy of OH-HONO(2), D(0)

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...