Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(37): 25353-63, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19561073

RESUMEN

The phylum Apicomplexa are a group of obligate intracellular parasites responsible for a wide range of important diseases. Central to the lifecycle of these unicellular parasites is their ability to migrate through animal tissue and invade target host cells. Apicomplexan movement is generated by a unique system of gliding motility in which substrate adhesins and invasion-related proteins are pulled across the plasma membrane by an underlying actin-myosin motor. The myosins of this motor are inserted into a dual membrane layer called the inner membrane complex (IMC) that is sandwiched between the plasma membrane and an underlying cytoskeletal basket. Central to our understanding of gliding motility is the characterization of proteins residing within the IMC, but to date only a few proteins are known. We report here a novel family of six-pass transmembrane proteins, termed the GAPM family, which are highly conserved and specific to Apicomplexa. In Plasmodium falciparum and Toxoplasma gondii the GAPMs localize to the IMC where they form highly SDS-resistant oligomeric complexes. The GAPMs co-purify with the cytoskeletal alveolin proteins and also to some degree with the actin-myosin motor itself. Hence, these proteins are strong candidates for an IMC-anchoring role, either directly or indirectly tethering the motor to the cytoskeleton.


Asunto(s)
Apicomplexa/metabolismo , Membrana Celular/metabolismo , Secuencia de Aminoácidos , Animales , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Movimiento , Miosinas/metabolismo , Filogenia , Plasmodium falciparum/metabolismo , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Toxoplasma/metabolismo
2.
Eukaryot Cell ; 7(12): 2123-32, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18820076

RESUMEN

Merozoite surface proteins have been implicated in the initial attachment to the host red blood cell membrane that begins the process of invasion, an important step in the life cycle of the malaria parasite. In Plasmodium falciparum, merozoite surface proteins include several glycosylphosphatidyl inositol-anchored proteins and peripheral proteins attached to the membrane through protein-protein interactions. The most abundant of these proteins is the merozoite surface protein 1 (MSP1) complex, encoded by at least three genes: msp1, msp6, and msp7. The msp7 gene is part of a six-member multigene family in Plasmodium falciparum. We have disrupted msp7 in the Plasmodium falciparum D10 parasite, as confirmed by Southern hybridization. Immunoblot and indirect immunofluorescence analyses confirmed the MSP7 null phenotype of D10DeltaMSP7 parasites. The synthesis, distribution, and processing of MSP1 were not affected in this parasite line. The level of expression and cellular distribution of the proteins MSP1, MSP3, MSP6, MSP9, and SERA5 remained comparable to those for the parental line. Furthermore, no significant change in the expression of MSP7-related proteins, except for that of MSRP5, was detected at the transcriptional level. The lack of MSP7 was not lethal at the asexual blood stage, but it did impair invasion of erythrocytes by merozoites to a significant degree. Despite this reduction in efficiency, D10DeltaMSP7 parasites did not show any obvious preference for alternate pathways of invasion.


Asunto(s)
Eritrocitos/parasitología , Eliminación de Gen , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Merozoítos/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Animales , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/metabolismo , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
3.
Mol Microbiol ; 68(1): 124-38, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18333885

RESUMEN

Antibodies from malaria-exposed individuals can agglutinate merozoites released from Plasmodium schizonts, thereby preventing them from invading new erythrocytes. Merozoite coat proteins attached to the plasma membrane are major targets for host antibodies and are therefore considered important malaria vaccine candidates. Prominent among these is the abundant glycosylphosphatidylinositol (GPI)-anchored merozoite surface protein 1 (MSP1) and particularly its C-terminal fragment (MSP1(19)) comprised of two epidermal growth factor (EGF)-like modules. In this paper, we revisit the role of agglutination and immunity using transgenic fluorescent marker proteins. We describe expression of heterologous MSP1(19)'miniproteins' on the surface of Plasmodium falciparum merozoites. To correctly express these proteins, we determined that GPI-anchoring and the presence of a signal sequence do not allow default export of proteins from the endoplasmic reticulum to merozoite surface and that extra sequence elements are required. The EGFs are insufficient for correct trafficking unless they are fused to additional residues that normally reside upstream of this fragment. Antibodies specifically targeting the surface-expressed miniprotein can inhibit erythrocyte invasion in vitro despite the presence of endogenous MSP1. Using a line expressing a green fluorescent protein-MSP1 fusion protein, we demonstrate that one mode of inhibition by antibodies targeting the MSP1(19) domain is the rapid agglutinating of merozoites prior to erythrocyte attachment.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Proteína 1 de Superficie de Merozoito/metabolismo , Plasmodium falciparum/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/inmunología , Modelos Biológicos , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Cell ; 131(6): 1072-83, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18083098

RESUMEN

The most virulent form of malaria is caused by waves of replication of blood stages of the protozoan pathogen Plasmodium falciparum. The parasite divides within an intraerythrocytic parasitophorous vacuole until rupture of the vacuole and host-cell membranes releases merozoites that invade fresh erythrocytes to repeat the cycle. Despite the importance of merozoite egress for disease progression, none of the molecular factors involved are known. We report that, just prior to egress, an essential serine protease called PfSUB1 is discharged from previously unrecognized parasite organelles (termed exonemes) into the parasitophorous vacuole space. There, PfSUB1 mediates the proteolytic maturation of at least two essential members of another enzyme family called SERA. Pharmacological blockade of PfSUB1 inhibits egress and ablates the invasive capacity of released merozoites. Our findings reveal the presence in the malarial parasitophorous vacuole of a regulated, PfSUB1-mediated proteolytic processing event required for release of viable parasites from the host erythrocyte.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Parásitos , Malaria/parasitología , Plasmodium falciparum/enzimología , Proteínas Protozoarias/fisiología , Subtilisinas/fisiología , Animales , Antígenos de Protozoos/metabolismo , Antígenos de Protozoos/fisiología , Estadios del Ciclo de Vida , Malaria/sangre , Modelos Biológicos , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Esporozoítos/fisiología , Subtilisinas/antagonistas & inhibidores , Subtilisinas/aislamiento & purificación , Subtilisinas/metabolismo , Vacuolas/parasitología
5.
J Cell Biol ; 174(7): 1023-33, 2006 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17000879

RESUMEN

Apicomplexan pathogens are obligate intracellular parasites. To enter cells, they must bind with high affinity to host cell receptors and then uncouple these interactions to complete invasion. Merozoites of Plasmodium falciparum, the parasite responsible for the most dangerous form of malaria, invade erythrocytes using a family of adhesins called Duffy binding ligand-erythrocyte binding proteins (DBL-EBPs). The best-characterized P. falciparum DBL-EBP is erythrocyte binding antigen 175 (EBA-175), which binds erythrocyte surface glycophorin A. We report that EBA-175 is shed from the merozoite at around the point of invasion. Shedding occurs by proteolytic cleavage within the transmembrane domain (TMD) at a site that is conserved across the DBL-EBP family. We show that EBA-175 is cleaved by PfROM4, a rhomboid protease that localizes to the merozoite plasma membrane, but not by other rhomboids tested. Mutations within the EBA-175 TMD that abolish cleavage by PfROM4 prevent parasite growth. Our results identify a crucial role for intramembrane proteolysis in the life cycle of this pathogen.


Asunto(s)
Antígenos de Protozoos/fisiología , Membrana Celular/metabolismo , Membrana Eritrocítica/parasitología , Eritrocitos/parasitología , Malaria/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/fisiología , Animales , Antígenos de Protozoos/genética , Eritrocitos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Humanos , Ligandos , Mutación , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/fisiología
6.
Infect Immun ; 74(7): 4330-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16790807

RESUMEN

Targeted gene disruption has proved to be a powerful approach for studying the function of important ligands involved in erythrocyte invasion by the extracellular merozoite form of the human malaria parasite, Plasmodium falciparum. Merozoite invasion proceeds via a number of seemingly independent alternate pathways, such that entry can proceed with parasites lacking particular ligand-receptor interactions. To date, most focus in this regard has been on single-pass (type 1) membrane proteins that reside in the secretory organelles. Another class of merozoite proteins likely to include ligands for erythrocyte receptors are the glycosylphosphatidyl inositol (GPI)-anchored membrane proteins that coat the parasite surface and/or reside in the apical organelles. Several of these are prominent vaccine candidates, although their functions remain unknown. Here, we systematically attempted to disrupt the genes encoding seven of the known GPI-anchored merozoite proteins of P. falciparum by using a double-crossover gene-targeting approach. Surprisingly, and in apparent contrast to other merozoite antigen classes, most of the genes (six of seven) encoding GPI-anchored merozoite proteins are refractory to genetic deletion, with the exception being the gene encoding merozoite surface protein 5 (MSP-5). No distinguishable growth rate or invasion pathway phenotype was detected for the msp-5 knockout line, although its presence as a surface-localized protein was confirmed.


Asunto(s)
Eliminación de Gen , Glicosilfosfatidilinositoles/química , Proteínas de la Membrana/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/metabolismo , Línea Celular , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
7.
PLoS Pathog ; 1(3): 241-51, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16322767

RESUMEN

Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of ectodomain components of two essential surface proteins, called MSP1 and AMA1. Both are released by the same merozoite surface "sheddase," but the molecular identity and mode of action of this protease is unknown. Here we identify it as PfSUB2, an integral membrane subtilisin-like protease (subtilase). We show that PfSUB2 is stored in apical secretory organelles called micronemes. Upon merozoite release it is secreted onto the parasite surface and translocates to its posterior pole in an actin-dependent manner, a trafficking pattern predicted of the sheddase. Subtilase propeptides are usually selective inhibitors of their cognate protease, and the PfSUB2 propeptide is no exception; we show that recombinant PfSUB2 propeptide binds specifically to mature parasite-derived PfSUB2 and is a potent, selective inhibitor of MSP1 and AMA1 shedding, directly establishing PfSUB2 as the sheddase. PfSUB2 is a new potential target for drugs designed to prevent erythrocyte invasion by the malaria parasite.

8.
Curr Opin Microbiol ; 8(4): 422-7, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16019257

RESUMEN

Invasion of red blood cells by the malaria merozoite is an essential step in the life cycle of this obligate intracellular pathogen. The molecular details of invasion are only recently becoming understood, largely through studies in related apicomplexan parasites such as Toxoplasma. Protease activity is required for successful invasion to disengage interactions between parasite adhesins and host cell receptors. Shedding of at least two essential surface proteins from the merozoite is thought to occur continuously during invasion as the parasite moves into the nascent parasitophorous vacuole. This shedding is performed by way of juxtamembrane cleavage and is mediated by a sheddase, which probably belongs to the subtilisin-like superfamily. Recent revelations have shown that transmembrane adhesins that are secreted onto the Toxoplasma tachyzoite surface and capped to its posterior pole are shed by way of cleavage within their transmembrane domains. A family of intramembrane serine proteases called rhomboids have now been identified within Apicomplexa, and one Toxoplasma rhomboid has been localized to the posterior end of the parasite. This supports their role in capping proteolysis. Proteases involved in invasion constitute potential targets for the development of new protease inhibitor-based drugs.


Asunto(s)
Eritrocitos/parasitología , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Interacciones Huésped-Parásitos , Humanos , Plasmodium falciparum/crecimiento & desarrollo
9.
Infect Immun ; 72(10): 6185-9, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15385530

RESUMEN

In a cross-sectional survey of 187 Gambian children and adults, we have analyzed prevalence, fine specificity, and 19-kilodalton merozoite surface protein 1 (MSP-1(19))-specific erythrocyte invasion inhibitory activity of antibodies to MSP-1(19) but find no significant association between any of these parameters and prevalence or density of malarial parasitemia, except that, after correcting for total anti-MSP-1(19) antibody levels, individuals with anti-MSP-1(19) antibodies that compete with an invasion inhibitory monoclonal antibody (12.10) were significantly less likely to have malaria infections with densities of > or =1,000 parasites/microl than were individuals without such antibodies. This association persisted after correction for age and ethnic origin.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Especificidad de Anticuerpos/inmunología , Malaria Falciparum/inmunología , Proteína 1 de Superficie de Merozoito/química , Proteína 1 de Superficie de Merozoito/inmunología , Parasitemia/prevención & control , Plasmodium falciparum/inmunología , Adolescente , Adulto , Envejecimiento/fisiología , Animales , Niño , Preescolar , Estudios Transversales , Etnicidad , Gambia/epidemiología , Gambia/etnología , Humanos , Lactante , Recién Nacido , Modelos Logísticos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Peso Molecular , Parasitemia/epidemiología , Parasitemia/inmunología , Parasitemia/parasitología , Plasmodium falciparum/química , Prevalencia
10.
J Immunol ; 173(1): 666-72, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15210830

RESUMEN

The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Proteína 1 de Superficie de Merozoito/inmunología , Subunidades de Proteína/inmunología , Proteínas Protozoarias/inmunología , Vacunas Sintéticas/inmunología , Anticuerpos Antiprotozoarios/sangre , Niño , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/parasitología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/clasificación
11.
J Biol Chem ; 279(19): 20147-53, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-14976193

RESUMEN

An understanding of structural and functional constraints on the C-terminal double epidermal growth factor (EGF)-like modules of merozoite surface protein (MSP)-1 and related proteins is of importance to the development of these molecules as malaria vaccines and drug targets. Using allelic replacement, we show that Plasmodium falciparum parasites can invade erythrocytes and grow efficiently in the absence of an MSP-1 protein with authentic MSP-1 EGF domains. In this mutant parasite line, the MSP-1 EGFs were replaced by the corresponding double EGF module from P. berghei MSP-8, the sequence of which shares only low identity with its MSP-1 counterpart. Hence, the C-terminal EGF domains of at least some Plasmodium surface proteins appear to perform the same function in asexual blood-stage development. Mapping the surface location of the few residues that are common to these functionally complementary EGF modules revealed the presence of a highly conserved pocket of potential functional significance. In contrast to MSP-8, an even more divergent double EGF module, that from the sexual stage protein PbS25, was not capable of complementing MSP-1 EGF function. More surprisingly, two chimeric double EGF modules comprising hybrids of the EGF domains from P. falciparum and P. chabaudi MSP-1 were also not capable of replacing the P. falciparum MSP-1 EGF module. Together, these data suggest that although the MSP-1 EGFs can accommodate extensive sequence diversity, there appear to be constraints that may restrict the simple accumulation of point mutations in the face of immune pressure in the field.


Asunto(s)
Antígenos de Protozoos/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Proteína 1 de Superficie de Merozoito/metabolismo , Proteínas Protozoarias/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Western Blotting , División Celular , Secuencia Conservada , ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Eritrocitos/parasitología , Femenino , Prueba de Complementación Genética , Ratones , Ratones Endogámicos BALB C , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Filogenia , Plásmidos/metabolismo , Plasmodium berghei/metabolismo , Plasmodium falciparum , Mutación Puntual , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factores de Tiempo , Transfección
12.
J Exp Med ; 198(6): 869-75, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12963693

RESUMEN

Antibodies capable of inhibiting the invasion of Plasmodium merozoites into erythrocytes are present in individuals that are clinically immune to the malaria parasite. Those targeting the 19-kD COOH-terminal domain of the major merozoite surface protein (MSP)-119 are a major component of this inhibitory activity. However, it has been difficult to assess the overall relevance of such antibodies to antiparasite immunity. Here we use an allelic replacement approach to generate a rodent malaria parasite (Plasmodium berghei) that expresses a human malaria (Plasmodium falciparum) form of MSP-119. We show that mice made semi-immune to this parasite line generate high levels of merozoite inhibitory antibodies that are specific for P. falciparum MSP-119. Importantly, protection from homologous blood stage challenge in these mice correlated with levels of P. falciparum MSP-119-specific inhibitory antibodies, but not with titres of total MSP-119-specific immunoglobulins. We conclude that merozoite inhibitory antibodies generated in response to infection can play a significant role in suppressing parasitemia in vivo. This study provides a strong impetus for the development of blood stage vaccines designed to generate invasion inhibitory antibodies and offers a new animal model to trial P. falciparum MSP-119 vaccines.


Asunto(s)
Anticuerpos/inmunología , Antígenos de Protozoos/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium falciparum/inmunología , Animales , Anticuerpos/metabolismo , Antígenos de Protozoos/metabolismo , Quimera , Modelos Animales de Enfermedad , Humanos , Inmunización , Vacunas contra la Malaria , Malaria Falciparum , Proteína 1 de Superficie de Merozoito/metabolismo , Ratones , Parasitemia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
13.
Philos Trans R Soc Lond B Biol Sci ; 357(1417): 25-33, 2002 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-11839179

RESUMEN

Malaria is a major human health problem and is responsible for over 2 million deaths per year. It is caused by a number of species of the genus Plasmodium, and Plasmodium falciparum is the causative agent of the most lethal form. Consequently, the development of a vaccine against this parasite is a priority. There are a number of stages of the parasite life cycle that are being targeted for the development of vaccines. Important candidate antigens include proteins on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to manipulate the genome of Plasmodium species has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. This has provided new information on the role of merozoite antigens in erythrocyte invasion and also allows new approaches to address their potential as vaccine candidates.


Asunto(s)
Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Animales , Antígenos de Protozoos/genética , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/prevención & control , Plasmodium falciparum/citología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Eliminación de Secuencia , Homología de Secuencia
14.
EMBO J ; 21(5): 1231-9, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11867551

RESUMEN

Bacterial plasmids introduced into the human malaria parasite Plasmodium falciparum replicate well but are poorly segregated during mitosis. In this paper, we screened a random P.falciparum genomic library in order to identify sequences that overcome this segregation defect. Using this approach, we selected for parasites that harbor a unique 21 bp repeat sequence known as Rep20. Rep20 is one of six different repeats found in the subtelomeric regions of all P.falciparum chromosomes but which is not found in other eukaryotes or in other plasmodia. Using a number of approaches, we demonstrate that Rep20 sequences lead to dramatically improved episomal maintenance by promoting plasmid segregation between daughter merozoites. We show that Rep20(+), but not Rep20(-), plasmids co-localize with terminal chromosomal clusters, indicating that Rep20 mediates plasmid tethering to chromosomes, a mechanism that explains the improved segregation phenotype. This study implicates a direct role for Rep20 in the physical association of chromosome ends, which is a process that facilitates the generation of diversity in the terminally located P.falciparum virulence genes.


Asunto(s)
Segregación Cromosómica/fisiología , ADN Protozoario/fisiología , Herencia Extracromosómica/fisiología , Vectores Genéticos/genética , Plásmidos/genética , Plasmodium falciparum/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Segregación Cromosómica/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Protozoario/genética , ADN Recombinante/genética , ADN Recombinante/metabolismo , Herencia Extracromosómica/genética , Biblioteca de Genes , Mitosis , Telómero/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...