Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Virulence ; 15(1): 2359483, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38868991

RESUMEN

The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.


Asunto(s)
Biopelículas , Infecciones Estafilocócicas , Staphylococcus epidermidis , Factores de Virulencia , Staphylococcus epidermidis/patogenicidad , Staphylococcus epidermidis/genética , Humanos , Infecciones Estafilocócicas/microbiología , Virulencia , Biopelículas/crecimiento & desarrollo , Factores de Virulencia/genética , Animales , Infecciones Oportunistas/microbiología , Evasión Inmune , Antibacterianos/farmacología
2.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37468451

RESUMEN

AIM: A promising approach for the development of next-generation antimicrobials is to shift their target from causing bacterial death to inhibiting virulence. Marine sponges are an excellent potential source of bioactive anti-virulence molecules (AVM). We screened fractions prepared from 26 samples of Irish coastal sponges for anti-biofilm activity against clinically relevant pathogens. METHODS AND RESULTS: Fifteen fractions from eight sponge species inhibited biofilm of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and/or Listeria monocytogenes without causing growth inhibition. Gas chromatograph/mass spectroscopy analyses of Mycale contarenii fractions revealed the presence of myristic acid and oleic acid. These fatty acids repressed transcription of the fibronectin-binding protein fnbA and fnbB genes and the polysaccharide intercellular adhesin icaADBC operon, which are required for MRSA and MSSA biofilm formation, respectively. CONCLUSIONS: This study illustrates the potential of AVM from Irish coastal sponges to specifically target bacterial virulence phenotypes, in this case, repression of biofilm formation via decreased transcription of biofilm-associated genes in MSSA and MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Poríferos , Infecciones Estafilocócicas , Animales , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Ácidos Grasos/farmacología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Biopelículas , Pruebas de Sensibilidad Microbiana
3.
PLoS Pathog ; 19(7): e1011536, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486930

RESUMEN

Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to ß-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased ß-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls ß-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Vía de Pentosa Fosfato/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Oxacilina/farmacología , Pared Celular/metabolismo , Monobactamas/metabolismo , Resistencia betalactámica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
4.
bioRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945400

RESUMEN

Central metabolic pathways controls virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to ß-lactam antibiotics, particularly in chemically defined media with glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased ß-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. Further evidence of the pleiotropic effect of the pgl mutation was reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Reduced binding of wheat germ agglutinin (WGA) to pgl was indicative of lower wall teichoic acid/lipoteichoic acid levels or altered teichoic acid structures. Mutations in the vraFG or graRS loci reversed the increased OX resistance phenotype and restored WGA binding to wild-type levels. VraFG/GraRS was previously implicated in susceptibility to cationic antimicrobial peptides and vancomycin, and these data reveal a broader role for this multienzyme membrane complex in the export of cell envelope precursors or modifying subunits required for resistance to diverse antimicrobial agents. Altogether our study highlights important roles for the PPP and VraFG/GraRS in ß-lactam resistance, which will support efforts to identify new drug targets and reintroduce ß-lactams in combination with adjuvants or other antibiotics for infections caused by MRSA and other ß-lactam resistant pathogens. Author summary: High-level resistance to penicillin-type (ß-lactam) antibiotics significantly limits the therapeutic options for patients with MRSA infections necessitating the use of newer agents, for which reduced susceptibility has already been described. Here we report for the first time that the central metabolism pentose phosphate pathway controls MRSA resistance to penicillin-type antibiotics. We comprehensively demonstrated that mutation of the PPP gene pgl perturbed metabolism in MRSA leading to increased flux to cell envelope precursors to drive increased antibiotic resistance. Moreover, increased resistance was dependent on the VraRG/GraRS multienzyme membrane complex previously implicated in resistance to antimicrobial peptides and vancomycin. Our data thus provide new insights on MRSA mechanisms of ß-lactam resistance, which will support efforts to expand the treatment options for infections caused by this and other antimicrobial resistant pathogens.

5.
mBio ; 14(1): e0247822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36507833

RESUMEN

The purine-derived signaling molecules c-di-AMP and (p)ppGpp control mecA/PBP2a-mediated ß-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) raise the possibility that purine availability can control antibiotic susceptibility. Consistent with this, exogenous guanosine and xanthosine, which are fluxed through the GTP branch of purine biosynthesis, were shown to significantly reduce MRSA ß-lactam resistance. In contrast, adenosine (fluxed to ATP) significantly increased oxacillin resistance, whereas inosine (which can be fluxed to ATP and GTP via hypoxanthine) only marginally increased oxacillin susceptibility. Furthermore, mutations that interfere with de novo purine synthesis (pur operon), transport (NupG, PbuG, PbuX) and the salvage pathway (DeoD2, Hpt) increased ß-lactam resistance in MRSA strain JE2. Increased resistance of a nupG mutant was not significantly reversed by guanosine, indicating that NupG is required for guanosine transport, which is required to reduce ß-lactam resistance. Suppressor mutants resistant to oxacillin/guanosine combinations contained several purine salvage pathway mutations, including nupG and hpt. Guanosine significantly increased cell size and reduced levels of c-di-AMP, while inactivation of GdpP, the c-di-AMP phosphodiesterase negated the impact of guanosine on ß-lactam susceptibility. PBP2a expression was unaffected in nupG or deoD2 mutants, suggesting that guanosine-induced ß-lactam susceptibility may result from dysfunctional c-di-AMP-dependent osmoregulation. These data reveal the therapeutic potential of purine nucleosides, as ß-lactam adjuvants that interfere with the normal activation of c-di-AMP are required for high-level ß-lactam resistance in MRSA. IMPORTANCE The clinical burden of infections caused by antimicrobial resistant (AMR) pathogens is a leading threat to public health. Maintaining the effectiveness of existing antimicrobial drugs or finding ways to reintroduce drugs to which resistance is widespread is an important part of efforts to address the AMR crisis. Predominantly, the safest and most effective class of antibiotics are the ß-lactams, which are no longer effective against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report that the purine nucleosides guanosine and xanthosine have potent activity as adjuvants that can resensitize MRSA to oxacillin and other ß-lactam antibiotics. Mechanistically, exposure of MRSA to these nucleosides significantly reduced the levels of the cyclic dinucleotide c-di-AMP, which is required for ß-lactam resistance. Drugs derived from nucleotides are widely used in the treatment of cancer and viral infections highlighting the clinical potential of using purine nucleosides to restore or enhance the therapeutic effectiveness of ß-lactams against MRSA and potentially other AMR pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nucleósidos de Purina/metabolismo , Nucleósidos de Purina/farmacología , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Oxacilina/farmacología , beta-Lactamas/farmacología , Monobactamas/metabolismo , Monobactamas/farmacología , Guanosina/metabolismo , Guanosina/farmacología , Adenosina Trifosfato/metabolismo , Guanosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Resistencia betalactámica/genética
6.
Access Microbiol ; 5(12)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188237

RESUMEN

Since 1997, Staphylococcus Great Britain and Ireland (StaphGBI) conferences have brought together the Staphylococcus research community in the UK and Ireland. The 12th StaphGBI conference, hosted by University of Galway 22-23 June 2023, was co-chaired by Dr Merve S. Zeden and Professor James P. O'Gara, supported by a local organizing committee of Chloe Hobbs-Tobin, Dr Rakesh Roy, Órla Burke and Aaron Nolan. Anchored by keynote speaker Professor Vinai Thomas, all other StaphGBI 2023 oral and post presentations were delivered by early career researchers. The conference attracted approximately 100 delegates, including 72 MRes/PhD students and postdoctoral fellows, 22 principal investigators and 4 exhibitors. The mix of scientists, clinicians and early career researchers stimulated excellent discussions on key issues and challenges in the Staphylococcus field. Staphylococcus aureus interactions with the host immune system, antimicrobial resistance (AMR) and new therapeutic approaches using antimicrobial peptides or metabolites, chronic wound and device-associated infections, and improving our understanding of staphylococcal genomics were common themes at StaphGBI 2023.

7.
mBio ; 12(3): e0053021, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34182779

RESUMEN

Penicillin binding protein 2a (PBP2a)-dependent resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact ß-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to ß-lactam antibiotics. IMPORTANCEmecA-dependent methicillin resistance in MRSA is subject to regulation by numerous accessory factors involved in cell wall biosynthesis, nucleotide signaling, and central metabolism. Here, we report that mutations in the TCA cycle gene, sucC, increased susceptibility to ß-lactam antibiotics and was accompanied by significant accumulation of succinyl-CoA, which in turn perturbed lysine succinylation in the proteome. Although cell wall structure and cross-linking were unchanged, significantly increased succinylation of the major autolysin Atl, which was the most succinylated protein in the proteome, was accompanied by near complete repression of autolytic activity. These findings link central metabolism and levels of succinyl-CoA to the regulation of ß-lactam antibiotic resistance in MRSA through succinylome-mediated control of two interlinked cell wall phenotypes. Drug-mediated interference of the SucCD-controlled succinylome may help overcome ß-lactam resistance.


Asunto(s)
Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , beta-Lactamas/farmacología , Acilcoenzima A/análisis , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Proteoma , Resistencia betalactámica
8.
Drug Deliv Transl Res ; 11(2): 702-716, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33713316

RESUMEN

Poor integration of orthopaedic devices with the host tissue owing to aseptic loosening and device-associated infections are two of the leading causes of implant failure, which represents a significant problem for both patients and the healthcare system. Novel strategies have focused on silver to combat antimicrobial infections as an alternative to drug therapeutics. In this study, we investigated the impact of increasing the % substitution (12% wt) of silver and strontium in hydroxyapatite (HA) coatings to enhance antimicrobial properties and stimulate osteoblasts, respectively. Additionally, we prepared a binary substituted coating containing both silver and strontium (AgSrA) at 12% wt as a comparison. All coatings were deposited using a novel blasting process, CoBlast, onto biomedical grade titanium (V). Surface physicochemical properties, cytocompatibility and antimicrobial functionality were determined. The anticolonising properties of the coatings were screened using Staphylococcus aureus ATCC 1448, and thereafter, the AgA coating was evaluated using clinically relevant strains. Strontium-doped surfaces demonstrated enhanced osteoblast viability; however, a lower inhibition of biofilm formation was observed compared with the other surfaces. A co-substituted AgSrA surface did not show enhanced osteoblast or anticolonising properties compared with the SrA and AgA surfaces, respectively. Due to its superior anticolonising performance in preliminary studies, AgA was chosen for further studies. The AgA coated surfaces demonstrated good antibacterial activity (eluted and immobilised ion) against methicillin-resistant S. aureus followed by methicillin-sensitive Staphylococcus aureus clinical isolates; however, the AgA surface displayed poor impact against Staphylococcus epidermidis. In conclusion, herein, we demonstrate that HA can be substituted with a range of ions to augment the properties of HA coatings on orthopaedic devices, which offer promising potential to combat orthopaedic device-associated infections and enhance device performance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Ortopedia , Antibacterianos/farmacología , Biopelículas , Materiales Biocompatibles Revestidos , Durapatita , Humanos , Plata/farmacología , Estroncio , Propiedades de Superficie , Titanio
9.
Int J Nanomedicine ; 16: 1929-1942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33727807

RESUMEN

BACKGROUND: Staphylococcus aureus biofilms pose a unique challenge in healthcare due to their tolerance to a wide range of antimicrobial agents. The high cost and lengthy timeline to develop novel therapeutic agents have pushed researchers to investigate the use of nanomaterials to deliver antibiofilm agents and target biofilm infections more efficiently. Previous studies have concentrated on improving the efficacy of antibiotics by deploying nanoparticles as nanocarriers. However, the dispersal of the extracellular polymeric substance (EPS) matrix in biofilm-associated infections is also critical to the development of novel nanoparticle-based therapies. METHODS: This study evaluated the efficacy of enzyme-functionalized mesoporous silica nanoparticles (MSNs) against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) biofilms. MSNs were functionalized with the enzyme lysostaphin, which causes cell lysis of S. aureus bacteria. This was combined with two other enzyme functionalized MSNs, serrapeptase and DNase I which will degrade protein and eDNA in the EPS matrix, to enhance eradication of the biofilm. Cell viability after treatment with enzyme-functionalized MSNs was assessed using a MTT assay and CLSM, while crystal violet staining was used to assess EPS removal. RESULTS: The efficacy of all three enzymes against S. aureus cells and biofilms was significantly improved when they were immobilized onto MSNs. Treatment efficacy was further enhanced when the three enzymes were used in combination against both MRSA and MSSA. Regardless of biofilm maturity (24 or 48 h), near-complete dispersal and killing of MRSA biofilms were observed after treatment with the enzyme-functionalized MSNs. Disruption of mature MSSA biofilms with a polysaccharide EPS was less efficient, but cell viability was significantly reduced. CONCLUSION: The combination of these three enzymes and their functionalization onto nanoparticles might extend the therapeutic options for the treatment of S. aureus infections, particularly those with a biofilm component.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Enzimas/metabolismo , Nanopartículas/química , Dióxido de Silicio/química , Staphylococcus aureus/fisiología , Biomasa , Supervivencia Celular , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Humanos , Staphylococcus aureus Resistente a Meticilina/fisiología , Pruebas de Sensibilidad Microbiana , Nanopartículas/ultraestructura , Porosidad
10.
Int J Antimicrob Agents ; 57(3): 106283, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33503451

RESUMEN

A major determinant of ß-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is the drug insensitive transpeptidase, PBP2a, encoded by mecA. Full expression of the resistance phenotype requires auxiliary factors. Two such factors, auxiliary factor A (auxA, SAUSA300_0980) and B (auxB, SAUSA300_1003), were identified in a screen against mutants with increased susceptibility to ß-lactams in the MRSA strain, JE2. auxA and auxB encode transmembrane proteins, with AuxA predicted to be a transporter. Inactivation of auxA or auxB enhanced ß-lactam susceptibility in community-, hospital- and livestock-associated MRSA strains without affecting PBP2a expression, peptidoglycan cross-linking or wall teichoic acid synthesis. Both mutants displayed increased susceptibility to inhibitors of lipoteichoic acid (LTA) synthesis and alanylation pathways and released LTA even in the absence of ß-lactams. The ß-lactam susceptibility of the aux mutants was suppressed by mutations inactivating gdpP, which was previously found to allow growth of mutants lacking the lipoteichoic synthase enzyme, LtaS. Using the Galleria mellonella infection model, enhanced survival of larvae inoculated with either auxA or auxB mutants was observed compared with the wild-type strain following treatment with amoxicillin. These results indicate that AuxA and AuxB are central for LTA stability and potential inhibitors can be tools to re-sensitize MRSA strains to ß-lactams and combat MRSA infections.


Asunto(s)
Antibacterianos/farmacología , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas de Unión a las Penicilinas/metabolismo , Ácidos Teicoicos/metabolismo , Amoxicilina/farmacología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cefoxitina/farmacología , Pared Celular/metabolismo , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Humanos , Larva/microbiología , Proteínas de la Membrana/genética , Meropenem/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Modelos Animales , Mariposas Nocturnas/microbiología , Mutación , Octoxinol/farmacología , Oxacilina/farmacología , Peptidoglicano/metabolismo , Fenotipo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Virulencia , Resistencia betalactámica , beta-Lactamas/farmacología
12.
Int J Nanomedicine ; 15: 4779-4791, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32753866

RESUMEN

BACKGROUND: Considering the timeline required for the development of novel antimicrobial drugs, increased attention should be given to repurposing old drugs and improving antimicrobial efficacy, particularly for chronic infections associated with biofilms. Methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are common causes of biofilm-associated infections but produce different biofilm matrices. MSSA biofilm cells are typically embedded in an extracellular polysaccharide matrix, whereas MRSA biofilms comprise predominantly of surface proteins and extracellular DNA (eDNA). Nanoparticles (NPs) have the potential to enhance the delivery of antimicrobial agents into biofilms. However, the mechanisms which influence the interactions between NPs and the biofilm matrix are not yet fully understood. METHODS: To investigate the influence of NPs surface chemistry on vancomycin (VAN) encapsulation and NP entrapment in MRSA and MSSA biofilms, mesoporous silica nanoparticles (MSNs) with different surface functionalization (bare-B, amine-D, carboxyl-C, aromatic-A) were synthesised using an adapted Stöber method. The antibacterial efficacy of VAN-loaded MSNs was assessed against MRSA and MSSA biofilms. RESULTS: The two negatively charged MSNs (MSN-B and MSN-C) showed a higher VAN loading in comparison to the positively charged MSNs (MSN-D and MSN-A). Cellular binding with MSN suspensions (0.25 mg mL-1) correlated with the reduced viability of both MSSA and MRSA biofilm cells. This allowed the administration of low MSNs concentrations while maintaining a high local concentration of the antibiotic surrounding the bacterial cells. CONCLUSION: Our data suggest that by tailoring the surface functionalization of MSNs, enhanced bacterial cell targeting can be achieved, leading to a novel treatment strategy for biofilm infections.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas , Staphylococcus aureus Resistente a Meticilina/fisiología , Nanopartículas/química , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Pruebas de Sensibilidad Microbiana , Nanopartículas/ultraestructura , Espectroscopía de Protones por Resonancia Magnética , Dióxido de Silicio/química , Vancomicina/farmacología
13.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252300

RESUMEN

The biofilm component poly-N-acetylglucosamine (PNAG) is an important virulence determinant in medical-device-related infections caused by ESKAPE group pathogens including Gram-positive Staphylococcus aureus and Gram-negative Acinetobacter baumannii. PNAG presentation on bacterial cell surfaces and its accessibility for host interactions are not fully understood. We employed a lectin microarray to examine PNAG surface presentation and interactions on methicillin-sensitive (MSSA) and methicillin-resistant S. aureus (MRSA) and a clinical A. baumannii isolate. Purified PNAG bound to wheatgerm agglutinin (WGA) and succinylated WGA (sWGA) lectins only. PNAG was the main accessible surface component on MSSA but was relatively inaccessible on the A. baumannii surface, where it modulated the presentation of other surface molecules. Carbohydrate microarrays demonstrated similar specificities of S. aureus and A. baumannii for their most intensely binding carbohydrates, including 3' and 6'sialyllactose, but differences in moderately binding ligands, including blood groups A and B. An N-acetylglucosamine-binding lectin function which binds to PNAG identified on the A. baumannii cell surface may contribute to biofilm structure and PNAG surface presentation on A. baumannii. Overall, these data indicated differences in PNAG presentation and accessibility for interactions on Gram-positive and Gram-negative cell surfaces which may play an important role in biofilm-mediated pathogenesis.


Asunto(s)
Acinetobacter baumannii/metabolismo , Biopelículas , Glicómica , Análisis por Micromatrices , Polisacáridos Bacterianos/metabolismo , Staphylococcus aureus/metabolismo , Acetilglucosamina/metabolismo , Membrana Externa Bacteriana/metabolismo , Glicómica/métodos , Humanos , Análisis por Micromatrices/métodos , Modelos Biológicos , Estructura Molecular , Polisacáridos Bacterianos/química , Factores de Virulencia/metabolismo
14.
J Infect Dis ; 221(6): 1000-1016, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628459

RESUMEN

Prolonging the clinical effectiveness of ß-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted d-cycloserine (DCS) transporter gene cycA resensitized methicillin-resistant Staphylococcus aureus (MRSA) to ß-lactam antibiotics. The cycA mutation also resulted in hypersusceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and d-alanine ligase required for d-alanine incorporation into cell wall peptidoglycan. Alanine transport was impaired in the cycA mutant, and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal d-ala-d-ala and reduced peptidoglycan cross-linking, prompting us to investigate synergism between ß-lactams and DCS. DCS resensitized MRSA to ß-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteremia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to ß-lactam antibiotics.


Asunto(s)
Alanina/metabolismo , Antibacterianos/farmacología , Cicloserina/farmacología , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , beta-Lactamas/farmacología , Animales , Antimetabolitos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas , Transporte Biológico , Femenino , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Mutación , Polisacáridos/química , Polisacáridos/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
15.
FEMS Microbiol Lett ; 366(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095299

RESUMEN

Prevention of device related infections due to Staphylococcus aureus biofilms on devices represents a significant challenge. Such infections have recently been shown to be dependent on the coagulation pathway via activation of pro-thrombin and fibrin production. Three direct-thrombin inhibitors, argatroban, hirudin and dabigatran, were examined to determine their effect on preventing S. aureus biofilm on plastic biochip surfaces under shear stress using an in vivo relevant model of infection. Surface functionalization of polyurethane discs via dityrosine covalent crosslinking with hirudin was performed and changes in bacterial density and microscopic appearances determined. The three direct-thrombin inhibitors prevented S. aureus biofilm formation on plasma-coated surfaces treated with these agents. Coating of polyurethane with one of these agents, hirudin, significantly inhibited biofilm formation on the modified surface. These findings reveal the exciting potential for coating biomaterial surfaces with direct thrombin inhibitors to prevent staphylococcal binding and subsequent device-related infections.


Asunto(s)
Antibacterianos/farmacología , Antitrombinas/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos , Equipos y Suministros/microbiología , Staphylococcus aureus/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Microscopía Electrónica de Rastreo , Poliuretanos/química , Poliuretanos/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/ultraestructura , Propiedades de Superficie , Trombina/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-28717043

RESUMEN

Hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains typically express high-level, homogeneous (HoR) ß-lactam resistance, whereas community-associated MRSA (CA-MRSA) more commonly express low-level heterogeneous (HeR) resistance. Expression of the HoR phenotype typically requires both increased expression of the mecA gene, carried on the staphylococcal cassette chromosome mec element (SCCmec), and additional mutational event(s) elsewhere on the chromosome. Here the oxacillin concentration in a chemostat culture of the CA-MRSA strain USA300 was increased from 8 µg/ml to 130 µg/ml over 13 days to isolate highly oxacillin-resistant derivatives. A stable, small-colony variant, designated HoR34, which had become established in the chemostat culture was found to have acquired mutations in gdpP, clpX, guaA, and camS Closer inspection of the genome sequence data further revealed that reads covering SCCmec were ∼10 times overrepresented compared to other parts of the chromosome. Quantitative PCR (qPCR) confirmed >10-fold-higher levels of mecA DNA on the HoR34 chromosome, and MinION genome sequencing verified the presence of 10 tandem repeats of the SCCmec element. qPCR further demonstrated that subculture of HoR34 in various concentrations of oxacillin (0 to 100 µg/ml) was accompanied by accordion-like contraction and amplification of the SCCmec element. Although slower growing than strain USA300, HoR34 outcompeted the parent strain in the presence of subinhibitory oxacillin. These data identify tandem amplification of the SCCmec element as a new mechanism of high-level methicillin resistance in MRSA, which may provide a competitive advantage for MRSA under antibiotic selection.


Asunto(s)
Cromosomas Bacterianos/genética , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Meticilina/farmacología , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , beta-Lactamas/farmacología
17.
Environ Microbiol ; 19(10): 3823-3833, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28631399

RESUMEN

Colonisation of the human skin by Staphylococcus aureus is a precursor for a variety of infections ranging from boils to sepsis and pneumonia. The rapid emergence of methicillin-resistant S. aureus following the clinical introduction of this antimicrobial drug and reports of resistance to all currently used anti-staphylococcal drugs has added to its formidable reputation. S. aureus survival on the skin and in vivo virulence is underpinned by a remarkable environmental adaptability, made possible by highly orchestrated regulation of gene expression and a capacity to undertake genome remodelling. Depending on the ecological or infection niche, controlled expression of a variety of adhesins can be initiated to facilitate adherence to extracellular matrix proteins, survival against desiccation or biofilm accumulation on implanted medical devices and host tissue. These adherence mechanisms complement toxin and enzyme production, immune evasion strategies, and antibiotic resistance and tolerance to collectively thwart efforts to develop reliable antimicrobial drug regimens and an effective S. aureus vaccine.


Asunto(s)
Antibacterianos/uso terapéutico , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/tratamiento farmacológico , Adhesión Bacteriana/fisiología , Farmacorresistencia Bacteriana Múltiple , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Relacionadas con Prótesis/microbiología , Piel/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Virulencia
18.
J Infect Dis ; 215(6): 975-983, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28453851

RESUMEN

Here, we demonstrate that antimicrobial peptides (AMPs) are an effective antibiofilm treatment when applied as catheter lock solutions (CLSs) against S. aureus biofilm infections. The activity of synthetic AMPs (Bac8c, HB43, P18, Omiganan, WMR, Ranalexin, and Polyphemusin) was measured against early and mature biofilms produced by methicillin-resistant S. aureus and methicillin-susceptible S. aureus isolates from patients with device-related infections grown under in vivo-relevant biofilm conditions. The cytotoxic and hemolytic activities of the AMPs against human cells and their immunomodulatory potential in human blood were also characterized. The D-Bac8c2,5Leu variant emerged as the most effective AMP during in vitro studies and was also highly effective in eradicating S. aureus biofilm infection when used in a CLS rat central venous catheter infection model. These data support the potential use of D-Bac8c2,5Leu, alone or in combination with other AMPs, in the treatment of S. aureus intravenous catheter infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Péptidos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Citocinas/sangre , Modelos Animales de Enfermedad , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/farmacología , Ratas , Ratas Sprague-Dawley , Vancomicina/administración & dosificación
19.
J Med Microbiol ; 66(3): 377-387, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28327271

RESUMEN

PURPOSE: The treatment of device-related infections is challenging and current anti-microbial compounds have poor anti-biofilm activity. We aimed to identify and characterize novel compounds effective in the eradication of Staphylococcus aureus biofilms. METHODOLOGY: Two novel compounds, MMV665953 {1-(3-chloro-4-fluorophenyl)-3-(3,4-dichlorophenyl)urea} and MMV665807{5-chloro-2-hydroxy-N-[3-(trifluoromethyl)phenyl]benzamide}, effective in killing S. aureus biofilms, were identified by screening of the open access 'malaria box' chemical library. The minimum bactericidal concentrations, half-maximal inhibition concentration (IC50) values and minimal biofilm killing concentrations effective in the killing of biofilm were determined against meticillin-resistant S. aureus and meticillin-sensitive S. aureus. Fibrin-embedded biofilms were grown under in vivo-relevant conditions, and viability was measured using a resazurin-conversion assay and confocal microscopy. The potential for the development of resistance and cytotoxicity was also assessed. RESULTS: MMV665953 and MMV665807 were bactericidal against S. aureus isolates. The IC50 against S. aureus biofilms was at 0.15-0.58 mg l-1 after 24 h treatment, whereas the concentration required to eradicate all tested biofilms was 4 mg l-1, making the compounds more bactericidal than conventional antibiotics. The cytotoxicity against human keratinocytes and primary endothelial cells was determined as IC50 7.47 and 0.18 mg l-1 for MMV665953, and as 1.895 and 0.076 mg l-1 for MMV665807. Neither compound was haemolytic nor caused platelet activation. MMV665953 and MMV665807 derivatives with reduced cytotoxicity exhibited a concomitant loss in anti-staphylococcal activity. CONCLUSION: MMV665953 and MMV665807 are more bactericidal against S. aureus biofilms than currently used anti-staphylococcal antibiotics and represent a valuable structural basis for further investigation in the treatment of staphylococcal biofilm-related infections.


Asunto(s)
Antimaláricos/farmacología , Benzamidas/farmacología , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Staphylococcus aureus/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos
20.
J Infect Dis ; 215(1): 80-87, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077586

RESUMEN

Innovative approaches to the use of existing antibiotics is an important strategy in efforts to address the escalating antimicrobial resistance crisis. We report a new approach to the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections by demonstrating that oxacillin can be used to significantly attenuate the virulence of MRSA despite the pathogen being resistant to this drug. Using mechanistic in vitro assays and in vivo models of invasive pneumonia and sepsis, we show that oxacillin-treated MRSA strains are significantly attenuated in virulence. This effect is based primarily on the oxacillin-dependent repression of the accessory gene regulator quorum-sensing system and altered cell wall architecture, which in turn lead to increased susceptibility to host killing of MRSA. Our data indicate that ß-lactam antibiotics should be included in the treatment regimen as an adjunct antivirulence therapy for patients with MRSA infections. This would represent an important change to current clinical practice for treatment of MRSA infection, with the potential to significantly improve patient outcomes in a safe, cost-effective manner.


Asunto(s)
Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oxacilina/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Pruebas de Sensibilidad Microbiana , Oxacilina/farmacología , Neumonía Estafilocócica/tratamiento farmacológico , Neumonía Estafilocócica/microbiología , Percepción de Quorum/genética , Sepsis/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Virulencia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...