RESUMEN
Human islets from deceased organ donors have made important contributions to our understanding of pancreatic endocrine function and continue to be an important resource for research studies aimed at understanding, treating, and preventing diabetes. Understanding the impacts of isolation and culture upon the yield of human islets for research is important for planning research studies and islet distribution to distant laboratories. Here, we examine islet isolation and cell culture outcomes at the Alberta Diabetes Institute (ADI) IsletCore (n = 197). Research-focused isolations typically have a lower yield of islet equivalents (IEQ), with a median of 252,876 IEQ, but a higher purity (median 85%) than clinically focused isolations before culture. The median recovery of IEQs after culture was 75%, suggesting some loss. This was associated with a shift toward smaller islet particles, indicating possible islet fragmentation, and occurred within 24 h with no further loss after longer periods of culture (up to 136 h). No overall change in stimulation index as a measure of islet function was seen with culture time. These findings were replicated in a representative cohort of clinical islet preparations from the Clinical Islet Transplant Program at the University of Alberta. Thus, loss of islets occurs within 24 h of isolation, and there is no further impact of extended culture prior to islet distribution for research.
Asunto(s)
Técnicas de Cultivo de Célula , Islotes Pancreáticos , Humanos , Islotes Pancreáticos/citología , Alberta , Masculino , Técnicas de Cultivo de Célula/métodos , Femenino , Adulto , Trasplante de Islotes Pancreáticos/métodos , Persona de Mediana Edad , Células Cultivadas , Anciano , Adulto Joven , Separación Celular/métodos , AdolescenteRESUMEN
BACKGROUND: Induced pluripotent stem cells (iPSCs) offer the potential to generate autologous iPSC-derived islets (iPSC islets), however, remain limited by scalability and product safety. METHODS: Herein, we report stagewise characterization of cells generated following a bioreactor-based differentiation protocol. Cell characteristics were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction, patch clamping, functional assessment, and in vivo functional and immunohistochemistry evaluation. Protocol yield and costs are assessed to determine scalability. RESULTS: Differentiation was capable of generating 90.4% PDX1+/NKX6.1+ pancreatic progenitors and 100% C-peptide+/NKX6.1+ iPSC islet cells. However, 82.1%, 49.6%, and 0.9% of the cells expressed SOX9 (duct), SLC18A1 (enterochromaffin cells), and CDX2 (gut cells), respectively. Explanted grafts contained mature monohormonal islet-like cells, however, CK19+ ductal tissues persist. Using this protocol, semi-planar differentiation using 150 mm plates achieved 5.72 × 104 cells/cm2 (total 8.3 × 106 cells), whereas complete suspension differentiation within 100 mL Vertical-Wheel bioreactors significantly increased cell yield to 1.1 × 106 cells/mL (total 105.0 × 106 cells), reducing costs by 88.8%. CONCLUSIONS: This study offers a scalable suspension-based approach for iPSC islet differentiation within Vertical-Wheel bioreactors with thorough characterization of the ensuing product to enable future protocol comparison and evaluation of approaches for off-target cell elimination. Results suggest that bioreactor-based suspension differentiation protocols may facilitate scalability and clinical implementation of iPSC islet therapies.
RESUMEN
Background: Limited information is available regarding outcomes of islet cell isolation (ICI) and transplantation (ITx) using medical assistance in dying (MAiD) donors. We aimed to assess the feasibility and outcomes of ICI and ITx in MAiD donors. Methods: ICI and ITx from MAiD were compared with donation after circulatory death (DCD) type III between 2016 and 2023. Differences of isolated islet equivalents (IEQs), numeric viability and other quantitative in vitro metabolic measures were assessed. Results: Overall, 81 ICIs were available of whom 34 (42%) and 47 (58%) from MAiD and DCD-III, respectively. There were no differences of pancreas and digested tissue weight and islets viability among the 2 groups; however, cold ischemic time was longer in MAiD (11.5 versus 9.1 h; Pâ =â 0.021). The IEQ (Pâ <â 0.001) and percent trapped (Pâ <â 0.001) were higher in the DCD-III; however, MAiD islets demonstrated a higher purity (Pâ =â 0.020). Overall, 15 ITx were performed of whom 3 (8.8%) and 12 (25.5%) from MAiD and DCD-III, respectively (Pâ =â 0.056). Patients had a median fasting C-peptide of 0.51 ng/mL (interquartile range, 0.30-0.76 nmol/L), with no differences between groups (MAiD = 0.52 versus DCD-III = 0.51; Pâ =â 0.718). The median HbA1c was 6.2% (interquartile range, 5.7%-7%) (MAiD = 6.3% versus DCD-III = 6.1%; Pâ =â 0.815) and BETA2 scores (MAiD = 7.4 versus DCD-III = 12.8; Pâ =â 0.229) did not differ. Conclusions: ICI from MAiD donor pancreas may be successfully transplanted with comparable outcomes to DCD-III and may be used for research. These results justify additional efforts to consider MAiD as another valuable source of grafts for ITx. Further multicenter studies and larger clinical experience are needed to validate our findings.
RESUMEN
Background: In solid organ transplantation, HLA matching between donor and recipient is associated with superior outcomes. In islet transplantation, an intervention for Type 1 diabetes, HLA matching between donor and recipient is not performed as part of allocation. Susceptibility to Type 1 diabetes is associated with the presence of certain HLA types. This study was conducted to determine the impact of these susceptibility antigens on islet allograft survival. Methods: This is a single-centre retrospective cohort study. This cohort of transplant recipients (n = 268) received islets from 661 donor pancreases between March 11th, 1999 and August 29th, 2018 at the University of Alberta Hospital (Edmonton, AB, Canada). The frequency of the Type 1 diabetes susceptibility HLA antigens (HLA-A24, -B39, -DQ8, -DQ2 and-DQ2-DQA1∗05) in recipients and donors were determined. Recipient and donor HLA antigens were examined in relation to time to first C-peptide negative status/graft failure or last observation point. Taking into account multiple transplants per patient, we fitted a Gaussian frailty survival analysis model with baseline hazard function stratified by transplant number, adjusted for cumulative islet dose and other confounders. Findings: Across all transplants recipients of donors positive for HLA-DQ8 had significantly better graft survival (adjusted HRs 0.33 95% CI 0.17-0.66; p = 0.002). At first transplant only, donors positive for HLA-DQ2-DQA1∗05 had inferior graft survival (adjusted HR 1.96 95% CI 1.10-3.46); p = 0.02), although this was not significant in the frailty analysis taking multiple transplants into account (adjusted HR 1.46 95% CI 0.77-2.78; p = 0.25). Other HLA antigens were not associated with graft survival after adjustment for confounders. Interpretation: Our findings suggest islet transplantation from HLA-DQ8 donors is associated with superior graft outcomes. A donor positive for HLA-DQ2-DQA1∗05 at first transplant was associated with inferior graft survival but not when taking into account multiple transplants per recipient. The relevance of HLA-antigens on organ allocation needs further evaluation and inclusion in islet transplant registries and additional observational and interventional studies to evaluate the role of HLA-DQ8 in islet graft survival are required. Funding: None.
RESUMEN
BACKGROUND: Induced pluripotent stem cells (iPSCs) offer potential to revolutionize regenerative medicine as a renewable source for islets, dopaminergic neurons, retinal cells, and cardiomyocytes. However, translation of these regenerative cell therapies requires cost-efficient mass manufacturing of high-quality human iPSCs. This study presents an improved three-dimensional Vertical-Wheel® bioreactor (3D suspension) cell expansion protocol with comparison to a two-dimensional (2D planar) protocol. METHODS: Sendai virus transfection of human peripheral blood mononuclear cells was used to establish mycoplasma and virus free iPSC lines without common genetic duplications or deletions. iPSCs were then expanded under 2D planar and 3D suspension culture conditions. We comparatively evaluated cell expansion capacity, genetic integrity, pluripotency phenotype, and in vitro and in vivo pluripotency potential of iPSCs. RESULTS: Expansion of iPSCs using Vertical-Wheel® bioreactors achieved 93.8-fold (IQR 30.2) growth compared to 19.1 (IQR 4.0) in 2D (p < 0.0022), the largest expansion potential reported to date over 5 days. 0.5 L Vertical-Wheel® bioreactors achieved similar expansion and further reduced iPSC production cost. 3D suspension expanded cells had increased proliferation, measured as Ki67+ expression using flow cytometry (3D: 69.4% [IQR 5.5%] vs. 2D: 57.4% [IQR 10.9%], p = 0.0022), and had a higher frequency of pluripotency marker (Oct4+Nanog+Sox2+) expression (3D: 94.3 [IQR 1.4] vs. 2D: 52.5% [IQR 5.6], p = 0.0079). q-PCR genetic analysis demonstrated a lack of duplications or deletions at the 8 most commonly mutated regions within iPSC lines after long-term passaging (> 25). 2D-cultured cells displayed a primed pluripotency phenotype, which transitioned to naïve after 3D-culture. Both 2D and 3D cells were capable of trilineage differentiation and following teratoma, 2D-expanded cells generated predominantly solid teratomas, while 3D-expanded cells produced more mature and predominantly cystic teratomas with lower Ki67+ expression within teratomas (3D: 16.7% [IQR 3.2%] vs.. 2D: 45.3% [IQR 3.0%], p = 0.002) in keeping with a naïve phenotype. CONCLUSION: This study demonstrates nearly 100-fold iPSC expansion over 5-days using our 3D suspension culture protocol in Vertical-Wheel® bioreactors, the largest cell growth reported to date. 3D expanded cells showed enhanced in vitro and in vivo pluripotency phenotype that may support more efficient scale-up strategies and safer clinical implementation.
Asunto(s)
Células Madre Pluripotentes Inducidas , Teratoma , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Antígeno Ki-67/metabolismo , Leucocitos Mononucleares , Diferenciación Celular/genética , FenotipoRESUMEN
OBJECTIVE: To provide the largest single-center analysis of islet (ITx) and pancreas (PTx) transplantation. SUMMARY BACKGROUND DATA: Studies describing long-term outcomes with ITx and PTx are scarce. METHODS: We included adults undergoing ITx (n=266) and PTx (n=146) at the University of Alberta from January 1999 to October 2019. Outcomes include patient and graft survival, insulin independence, glycemic control, procedure-related complications, and hospital readmissions. Data are presented as medians (interquartile ranges, IQR) and absolute numbers (percentages, %) and compared using Mann-Whitney and χ2 tests. Kaplan-Meier estimates, Cox proportional hazard models and mixed main effects models were implemented. RESULTS: Crude mortality was 9.4% and 14.4% after ITx and PTx, respectively ( P= 0.141). Sex-adjusted and age-adjusted hazard-ratio for mortality was 2.08 (95% CI, 1.04-4.17, P= 0.038) for PTx versus ITx. Insulin independence occurred in 78.6% and 92.5% in ITx and PTx recipients, respectively ( P= 0.0003), while the total duration of insulin independence was 2.1 (IQR 0.8-4.6) and 6.7 (IQR 2.9-12.4) year for ITx and PTx, respectively ( P= 2.2×10 -22 ). Graft failure ensued in 34.2% and 19.9% after ITx and PTx, respectively ( P =0.002). Glycemic control improved for up to 20-years post-transplant, particularly for PTx recipients (group, P= 7.4×10 -7 , time, P =4.8×10 -6 , group*time, P= 1.2×10 -7 ). Procedure-related complications and hospital readmissions were higher after PTx ( P =2.5×10 -32 and P= 6.4×10 -112 , respectively). CONCLUSIONS: PTx shows higher sex-adjusted and age-adjusted mortality, procedure-related complications and readmissions compared with ITx. Conversely, insulin independence, graft survival and glycemic control are better with PTx. This study provides data to balance risks and benefits with ITx and PTx, which could improve shared decision-making.
Asunto(s)
Trasplante de Islotes Pancreáticos , Trasplante de Páncreas , Adulto , Humanos , Páncreas , InsulinaRESUMEN
BACKGROUND: ABO-incompatible transplantation has improved accessibility of kidney, heart, and liver transplantation. Pancreatic islet transplantation continues to be ABO-matched, yet ABH antigen expression within isolated human islets or novel human embryonic stem cell (hESC)-derived islets remain uncharacterized. METHODS: We evaluated ABH glycans within human pancreata, isolated islets, hESC-derived pancreatic progenitors, and the ensuing in vivo mature islets following kidney subcapsular transplantation in rats. Analyses include fluorescence immunohistochemistry and single-cell analysis using flow cytometry. RESULTS: Within the pancreas, endocrine and ductal cells do not express ABH antigens. Conversely, pancreatic acinar tissues strongly express these antigens. Acinar tissues are present in a substantial portion of cells within islet preparations obtained for clinical transplantation. The hESC-derived pancreatic progenitors and their ensuing in vivo-matured islet-like clusters do not express ABH antigens. CONCLUSIONS: Clinical pancreatic islet transplantation should remain ABO-matched because of contaminant acinar tissue within islet preparations that express ABH glycans. Alternatively, hESC-derived pancreatic progenitors and the resulting in vivo-matured hESC-derived islets do not express ABH antigens. These findings introduce the potential for ABO-incompatible cell replacement treatment and offer evidence to support scalability of hESC-derived cell therapies in type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Humanos , Ratas , Antígenos , Diabetes Mellitus Tipo 1/cirugía , Células Madre Embrionarias , Islotes Pancreáticos/metabolismo , Páncreas , Sistema del Grupo Sanguíneo ABO/inmunologíaRESUMEN
BACKGROUND: C-peptide levels are a key measure of beta-cell mass following islet transplantation, but threshold values required to achieve clinically relevant patient-centered outcomes are not yet established. METHODS: We conducted a cross-sectional retrospective cohort study evaluating patients undergoing islet transplantation at a single center from 1999 to 2018. Cohorts included patients achieving insulin independence without hypoglycemia, those with insulin dependence without hypoglycemia, and those with recurrent symptomatic hypoglycemia. Primary outcome was fasting C-peptide levels at 6 to 12 mo postfirst transplant; secondary outcomes included stimulated C-peptide levels and BETA-2 scores. Fasting and stimulated C-peptide and BETA-2 cutoff values for determination of hypoglycemic freedom and insulin independence were evaluated using receiver operating characteristic curves. RESULTS: We analyzed 192 patients, with 122 (63.5%) being insulin independent without hypoglycemia, 61 (31.8%) being insulin dependent without hypoglycemia, and 9 (4.7%) experiencing recurrent symptomatic hypoglycemia. Patients with insulin independence had a median (interquartile range) fasting C-peptide level of 0.66 nmol/L (0.34 nmol/L), compared with 0.49 nmol/L (0.25 nmol/L) for those being insulin dependent without hypoglycemia and 0.07 nmol/L (0.05 nmol/L) for patients experiencing hypoglycemia ( P < 0.001). Optimal fasting C-peptide cutoffs for insulin independence and hypoglycemia were ≥0.50 nmol/L and ≥0.12 nmol/L, respectively. Cutoffs for insulin independence and freedom of hypoglycemia using stimulated C-peptide were ≥1.2 nmol/L and ≥0.68 nmol/L, respectively, whereas optimal cutoff BETA-2 scores were ≥16.4 and ≥5.2. CONCLUSIONS: We define C-peptide levels and BETA-2 scores associated with patient-centered outcomes. Characterizing these values will enable evaluation of ongoing clinical trials with islet or stem cell therapies.
Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Trasplante de Islotes Pancreáticos , Humanos , Péptido C , Diabetes Mellitus Tipo 1/terapia , Estudios Retrospectivos , Estudios Transversales , Glucemia , Estudios de Seguimiento , Insulina/uso terapéutico , Atención Dirigida al PacienteRESUMEN
The delivery of encapsulated islets or stem cell-derived insulin-producing cells (i.e., bioartificial pancreas devices) may achieve a functional cure for type 1 diabetes, but their efficacy is limited by mass transport constraints. Modeling such constraints is thus desirable, but previous efforts invoke simplifications which limit the utility of their insights. Herein, we present a computational platform for investigating the therapeutic capacity of generic and user-programmable bioartificial pancreas devices, which accounts for highly influential stochastic properties including the size distribution and random localization of the cells. We first apply the platform in a study which finds that endogenous islet size distribution variance significantly influences device potency. Then we pursue optimizations, determining ideal device structures and estimates of the curative cell dose. Finally, we propose a new, device-specific islet equivalence conversion table, and develop a surrogate machine learning model, hosted on a web application, to rapidly produce these coefficients for user-defined devices.
Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , PáncreasRESUMEN
BACKGROUND: Preliminary studies show promise for extrahepatic islet transplantation (ITx). However, clinical comparisons with intraportal ITx outcomes remain limited. METHODS: This single-center cohort study evaluates patients receiving extrahepatic or intraportal ITx between 1999 and 2018. Primary outcome was stimulated C-peptide level. Secondary outcomes were fasting plasma glucose, BETA-2 scores, and fasting C-peptide level. Multivariable logistic modeling evaluated factors independently associated with a composite variable of early graft failure and primary nonfunction within 60 d of ITx. RESULTS: Of 264 patients, 9 (3.5%) received extrahepatic ITx (gastric submucosal = 2, subcutaneous = 3, omental = 4). Group demographics were similar at baseline (age, body mass index, diabetes duration, and glycemic control). At 1-3 mo post-first infusion, patients receiving extrahepatic ITx had significantly lower stimulated C-peptide (0.05 nmol/L versus 1.2 nmol/L, P < 0.001), higher fasting plasma glucose (9.3 mmol/L versus 7.3 mmol/L, P < 0.001), and lower BETA-2 scores (0 versus 11.6, P < 0.001) and SUITO indices (1.5 versus 39.6, P < 0.001) compared with those receiving intraportal ITx. Subjects receiving extrahepatic grafts failed to produce median C-peptide ≥0.2 nmol/L within the first 60 d after transplant. Subsequent intraportal infusion following extrahepatic transplants achieved equivalent outcomes compared with patients receiving intraportal transplant alone. Extrahepatic ITx was independently associated with early graft failure/primary non-function (odds ratio 1.709, confidence interval 73.8-39 616.0, P < 0.001), whereas no other factors were independently predictive. CONCLUSIONS: Using current techniques, intraportal islet infusion remains the gold standard for clinical ITx, with superior engraftment, graft function, and glycemic outcomes compared with extrahepatic transplantation of human islets.
Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Humanos , Trasplante de Islotes Pancreáticos/efectos adversos , Trasplante de Islotes Pancreáticos/métodos , Glucemia , Péptido C , Estudios de Cohortes , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/cirugíaRESUMEN
BACKGROUND: Islet transplantation offers an effective treatment for selected people with type 1 diabetes and intractable hypoglycaemia. Long-term experience, however, remains limited. We report outcomes from a single-centre cohort up to 20 years after islet transplantation. METHODS: This cohort study included patients older than 18 years with type 1 diabetes undergoing allogeneic islet transplantation between March 11, 1999, and Oct 1, 2019, at the University of Alberta Hospital (Edmonton, AB, Canada). Patients who underwent islet-after-kidney transplantation and islet transplantation alone or islet transplantation before whole-pancreas transplantation (follow-up was censored at the time of whole-pancreas transplantation) were included. Patient survival, graft survival (fasting plasma C-peptide >0·1 nmol/L), insulin independence, glycaemic control, and adverse events are reported. To identify factors associated with prolonged graft survival, recipients with sustained graft survival (≥90% of patient follow-up duration) were compared with those who had non-sustained graft survival (<90% of follow-up duration). Multivariate binary logistic regression analyses were done to determine predictors of sustained graft survival. FINDINGS: Between March 11, 1999, and Oct 1, 2019, 255 patients underwent islet transplantation and were included in the analyses (149 [58%] were female and 218 [85%] were White). Over a median follow-up of 7·4 years (IQR 4·4-12·2), 230 (90%) patients survived. Median graft survival was 5·9 years (IQR 3·0-9·5), and graft failure occurred in 91 (36%) patients. 178 (70%) recipients had sustained graft survival, and 77 (30%) had non-sustained graft survival. At baseline, compared with patients with non-sustained graft survival, those with sustained graft survival had longer median type 1 diabetes duration (33·5 years [IQR 24·3-41·7] vs 26·2 years [17·0-35·5]; p=0·0003), median older age (49·4 years [43·5-56·1] vs 44·2 years [35·4-54·2]; p=0·0011), and lower median insulin requirements (0·53 units/kg per day [0·45-0·67] vs 0·59 units/kg per day [0·48-0·70]; p=0·032), but median HbA1c concentrations were similar (8·2% [7·5-9·0] vs 8·5% [7·8-9·2]; p=0·23). 201 (79%) recipients had insulin independence, with a Kaplan-Meier estimate of 61% (95% CI 54-67) at 1 year, 32% (25-39) at 5 years, 20% (14-27) at 10 years, 11% (6-18) at 15 years, and 8% (2-17) at 20 years. Patients with sustained graft survival had significantly higher rates of insulin independence (160 [90%] of 178 vs 41 [53%] of 77; p<0·0001) and sustained improvements in glycaemic control mixed-main-effects model group effect, p<0·0001) compared with those with non-sustained graft survival. Multivariate analyses identified the combined use of anakinra plus etanercept (adjusted odds ratio 7·5 [95% CI 2·7-21·0], p<0·0001) and the BETA-2 score of 15 or higher (4·1 [1·5-11·4], p=0·0066) as factors associated with sustained graft survival. In recipients with sustained graft survival, the incidence of procedural complications was lower (23 [5%] of 443 infusions vs 17 [10%] of 167 infusions; p=0·027), whereas the incidence of cancer was higher (29 of [16%] of 178 vs four [5%] of 77; p=0·015) than in those with non-sustained graft survival; most were skin cancers (22 [67%] of 33). End-stage renal disease and severe infections were similar between groups. INTERPRETATION: We present the largest single-centre cohort study of long-term outcomes following islet transplantation. Although some limitations with our study remain, such as the retrospective component, a relatively small sample size, and the absence of non-transplant controls, we found that the combined use of anakinra plus etanercept and the BETA-2 score were associated with improved outcomes, and therefore these factors could inform clinical practice. FUNDING: None.
Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Estudios de Cohortes , Diabetes Mellitus Tipo 1/cirugía , Etanercept/uso terapéutico , Femenino , Supervivencia de Injerto , Humanos , Insulina/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Masculino , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
The paucity of human donors limits broadened application of ß-cell replacement therapy. Insulin-producing cells derived from human embryonic stem cells (hESCs) have recently been investigated clinically as a feasible surrogate to primary tissue. Herein, we examine the long-term efficacy of hESC-derived pancreatic endoderm cells (PECs) to maintain normoglycemia posttransplant and characterize the phenotype of the PEC grafts. Mice with chemically induced diabetes were transplanted with PECs into the subcutaneous device-less site. Transplant function was assessed through nonfasting blood glucose measurements, intraperitoneal glucose tolerance testing (IPGTT), and human C-peptide secretion for 517 days. Explanted grafts were assessed for ex vivo function and immunohistochemically. All PEC recipients (n = 8) maintained normoglycemia until graft retrieval. IPGTTs at 365 and 517 days posttransplant did not differ (P > 0.05), however, both demonstrated superior glucose clearance compared with nondiabetic and transplant controls (P < 0.001). Serum C-peptide levels demonstrated significant glucose responsiveness (fasted vs. stimulated) (P < 0.01). Small intragraft cysts were palpable in all mice, which resolved but recurred after aspiration. Cysts showed monomorphic neuroendocrine proliferation and lined by ductal epithelium. Explanted grafts demonstrated similar insulin secretory capacity as human islets and stained positively for endocrine cells. Our results demonstrate the ability of PECs to differentiate in vivo and restore glycemic control while confirming minimal proliferation and absence of neoplastic change within the grafts during the time evaluated.
Asunto(s)
Endodermo/trasplante , Células Secretoras de Insulina/trasplante , Animales , Glucemia , Péptido C/sangre , Humanos , Insulina/sangre , RatonesRESUMEN
BACKGROUND: Optimizing engraftment and early survival after clinical islet transplantation is critical to long-term function, but there are no reliable, quantifiable measures to assess beta cell death. Circulating cell-free DNA (cfDNA) derived from beta cells has been identified as a novel biomarker to detect cell loss and was recently validated in new-onset type 1 diabetes and in islet transplant patients. METHODS: Herein we report beta cell cfDNA measurements after allotransplantation in 37 subjects and the correlation with clinical outcomes. RESULTS: A distinctive peak of cfDNA was observed 1 hour after transplantation in 31 (83.8%) of 37 subjects. The presence and magnitude of this signal did not correlate with transplant outcome. The 1-hour signal represents dead beta cells carried over into the recipient after islet isolation and culture, combined with acute cell death post infusion. Beta cell cfDNA was also detected 24 hours posttransplant (8/37 subjects, 21.6%). This signal was associated with higher 1-month insulin requirements (P = 0.04), lower 1-month stimulated C-peptide levels (P = 0.01), and overall worse 3-month engraftment, by insulin independence (receiver operating characteristic-area under the curve = 0.70, P = 0.03) and beta 2 score (receiver operating characteristic-area under the curve = 0.77, P = 0.006). CONCLUSIONS: cfDNA-based estimation of beta cell death 24 hours after islet allotransplantation correlates with clinical outcome and could predict early engraftment.
Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Diabetes Mellitus Tipo 1/cirugía , Células Secretoras de Insulina/trasplante , Trasplante de Islotes Pancreáticos/efectos adversos , Adulto , Anciano , Biomarcadores/sangre , Muerte Celular , Ácidos Nucleicos Libres de Células/genética , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Femenino , Supervivencia de Injerto , Humanos , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Factores de Tiempo , Resultado del Tratamiento , Adulto JovenRESUMEN
Beta-cell replacement therapy is an effective means to restore glucose homeostasis in select humans with autoimmune diabetes. The scarcity of "healthy" human donor pancreata restricts the broader application of this effective curative therapy. "ß-Like" cells derived from human embryonic stem cells (hESC), with the capacity to secrete insulin in a glucose-regulated manner, have been developed in vitro, with limitless capacity for expansion. Here we report long-term diabetes correction in mice transplanted with hESC-derived pancreatic endoderm cells (PECs) in a prevascularized subcutaneous site. This advancement mitigates chronic foreign-body response, utilizes a device- and growth factor-free approach, facilitates in vivo differentiation of PECs into glucose-responsive insulin-producing cells, and reliably restores glycemic control. Basal and stimulated human C-peptide secretion was detected throughout the study, which was abolished upon graft removal. Recipient mice demonstrated physiological clearance of glucose in response to metabolic challenge and safely retrieved grafts contained viable glucose regulatory cells.
Asunto(s)
Endodermo/trasplante , Neovascularización Fisiológica/fisiología , Páncreas/citología , Animales , Glucemia/análisis , Glucemia/metabolismo , Péptido C/metabolismo , Calcio/metabolismo , Diferenciación Celular , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/terapia , Endodermo/citología , Endodermo/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Inyecciones Subcutáneas , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Consumo de Oxígeno , Trasplante HeterólogoRESUMEN
Selection of an optimal donor pancreas is the first key task for successful islet isolation. We conducted a retrospective multicenter study in 11 centers in North America to develop an islet donor scoring system using donor variables. The data set consisting of 1,056 deceased donors was used for development of a scoring system to predict islet isolation success (defined as postpurification islet yield >400,000 islet equivalents). With the aid of univariate logistic regression analyses, we developed the North American Islet Donor Score (NAIDS) ranging from 0 to 100 points. The c index in the development cohort was 0.73 (95% confidence interval 0.70-0.76). The success rate increased proportionally as the NAIDS increased, from 6.8% success in the NAIDS < 50 points to 53.7% success in the NAIDS ≥ 80 points. We further validated the NAIDS using a separate set of data consisting of 179 islet isolations. A comparable outcome of the NAIDS was observed in the validation cohort. The NAIDS may be a useful tool for donor pancreas selection in clinical practice. Apart from its utility in clinical decision making, the NAIDS may also be used in a research setting as a standardized measurement of pancreas quality.
Asunto(s)
Trasplante de Islotes Pancreáticos/métodos , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Páncreas/cirugía , Estudios Retrospectivos , Donantes de Tejidos , Adulto JovenRESUMEN
Clinical islet transplantation has become an established treatment modality for selected patients with type 1 diabetes. However, a large proportion of transplanted islets is lost through multiple factors, including immunosuppressant-related toxicity, often requiring more than one donor to achieve insulin independence. On the basis of the cytoprotective capabilities of antifreeze proteins (AFPs), we hypothesized that supplementation of islets with synthetic AFP analog antiaging glycopeptide (AAGP) would enhance posttransplant engraftment and function and protect against tacrolimus (Tac) toxicity. In vitro and in vivo islet Tac exposure elicited significant but reversible reduction in insulin secretion in both mouse and human islets. Supplementation with AAGP resulted in improvement of islet survival (Tac(+) vs. Tac+AAGP, 31.5% vs. 67.6%, P < 0.01) coupled with better insulin secretion (area under the curve: Tac(+) vs. Tac+AAGP, 7.3 vs. 129.2 mmol/L/60 min, P < 0.001). The addition of AAGP reduced oxidative stress, enhanced insulin exocytosis, improved apoptosis, and improved engraftment in mice by decreasing expression of interleukin (IL)-1ß, IL-6, keratinocyte chemokine, and tumor necrosis factor-α. Finally, transplant efficacy was superior in the Tac+AAGP group and was similar to islets not exposed to Tac, despite receiving continuous treatment for a limited time. Thus, supplementation with AAGP during culture improves islet potency and attenuates long-term Tac-induced graft dysfunction.
Asunto(s)
Proteínas Anticongelantes/farmacología , Inmunosupresores/toxicidad , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/efectos de los fármacos , Tacrolimus/toxicidad , Animales , Apoptosis/efectos de los fármacos , Exocitosis , Supervivencia de Injerto/efectos de los fármacos , Humanos , Insulina/metabolismo , Secreción de Insulina , Interleucinas/metabolismo , Islotes Pancreáticos/lesiones , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos/fisiología , Ratones , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacologíaRESUMEN
Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and ß-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.
Asunto(s)
Bancos de Muestras Biológicas , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/patología , Islotes Pancreáticos/citología , Islotes Pancreáticos/patología , Obtención de Tejidos y Órganos/métodos , Adulto , Alberta , Bancos de Muestras Biológicas/organización & administración , Separación Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Islotes Pancreáticos/fisiología , Masculino , Persona de Mediana Edad , Donantes de TejidosRESUMEN
In islet transplantation, deceased cardiac death (DCD) donation has been identified as a potential extended source. There are currently no studies comparing outcomes between these categories, and our goal was to compare islet isolation success rates and transplantation outcomes between DCD and neurological determination of death (NDD) donors. Islet isolations from 15 DCD and 418 NDD were performed in our centre between September 2008 and September 2014. Donor variables, islet yields, metabolic function of isolated isled and insulin requirements at 1-month post-transplant were compared. Compared to NDD, pancreata from DCD were more often procured locally and donors required less vasopressive support (P < 0.001 and P = 0.023, respectively), but the other variables were similar between groups. Pre- and postpurification islet yields were similar between NDD and DCD (576 vs. 608 × 10(3) islet equivalent, P = 0.628 and 386 vs. 379, P = 0.881, respectively). The metabolic function was similar between NDD and DCD, as well as the mean decrease in insulin requirement at 1-month post-transplantation (NDD: 64.82%; DCD: 60.17% reduction, P = 0.517). These results support the broader use of DCD pancreata for islet isolation. A much larger DCD islet experience will be required to truly determine noninferiority of both short- and long-term outcomes.
Asunto(s)
Muerte , Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/citología , Obtención de Tejidos y Órganos/métodos , Adulto , Análisis de Varianza , Distribución de Chi-Cuadrado , Estudios de Cohortes , Diabetes Mellitus Tipo 1/diagnóstico , Femenino , Estudios de Seguimiento , Rechazo de Injerto , Supervivencia de Injerto , Humanos , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos/efectos adversos , Masculino , Persona de Mediana Edad , Trasplante de Páncreas/efectos adversos , Trasplante de Páncreas/métodos , Estudios Retrospectivos , Medición de Riesgo , Donantes de Tejidos , Resultado del TratamientoRESUMEN
The consequence of a pancreas injury during the procurement for islet isolation purpose is unknown. The goal of this work was to assess the injuries of the pancreata procured for islet isolation, and to determine their effect on the islet yield. Between January 2007 and October 2013, we prospectively documented every injury of the pancreata processed in our centre for islet isolation. Injuries involving the main duct were classified as major, the others as minor. Donors' characteristics and islet yields were compared between the groups of injuries. A pancreas injury was identified in 42 of 452 pancreata received for islet isolation (9.3%). In 15 cases, the injury was major (3.3% of all pancreata). Although a minor injury did not affect the islet yield, a major injury was significantly associated with unfavourable outcomes (postpurification mean islet equivalent of 364 ± 181, 405 ± 190 and 230 ± 115 × 10(3) for absence of injury, minor injury and major injury, respectively). A major injury was significantly more prevalent in lean and short donors. We recommend assessing the quality of the pancreas in the islet isolation centre before starting the isolation procedure. Each centre should determine its own policy based on its financial resources and on the wait list.
Asunto(s)
Trasplante de Islotes Pancreáticos/efectos adversos , Páncreas/lesiones , Páncreas/cirugía , Recolección de Tejidos y Órganos/efectos adversos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conductos Pancreáticos/lesiones , Conductos Pancreáticos/cirugía , Pronóstico , Estudios ProspectivosRESUMEN
BACKGROUND: Islet transplantation is a recognized treatment option for select patients with type I diabetes mellitus. However, islet infusions from multiple donors are often required to achieve insulin independence. Ideally, insulin independence would be achieved routinely with only a single donor. Identification of factors associated with insulin independence after single-donor islet transplantation may help to select recipient-donor combinations with the highest probability of success. METHODS: Subjects undergoing islet transplantation at a single center (Edmonton, Canada) between March 1999 and August 2013 were included. Recipient, donor, and transplant characteristics were collected and compared between recipients who became insulin independent after one islet transplantation and those who did not. RESULTS: Thirty-one patients achieved insulin independence after a single-donor islet transplantation, and 149 did not. Long-term insulin-free survival was not different between the groups. Factors significantly associated with single-donor success included recipient age, insulin requirement at baseline, donor weight, donor body mass index, islet transplant mass, and peritransplant heparin and insulin administration. On multivariate analysis, pretransplantation daily insulin requirements, the use of peritransplantation heparin and insulin infusions, and islet transplant mass remained significant. CONCLUSION: We have identified clinically relevant differences defining the achievement of insulin independence after single-donor transplantation. Based on these differences, a preoperative insulin requirement of less than 0.6 U/kg per day and receiving more than 5,646 islet equivalents (IEQ)/kg have a sensitivity of 84% and 71% and specificity of 50% and 50%, respectively, for insulin independence after single-donor islet transplantation. With ideal patient selection, this finding could potentially increase single-donor transplantation success and may be especially relevant for presensitized subjects or those who may subsequently require renal replacement.