Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 451, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755484

RESUMEN

Compared to research on eutrophication in lakes, there has been significantly less work carried out on rivers despite the importance of the topic. However, over the last decade, there has been a surge of interest in the response of aquatic plants to eutrophication in rivers. This is an area of applied research and the work has been driven by the widespread nature of the impacts and the significant opportunities for system remediation. A conceptual model has been put forward to describe how aquatic plants respond to eutrophication. Since the model was created, there have been substantial increases in our understanding of a number of the underlying processes. For example, we now know the threshold nutrient concentrations at which nutrients no longer limit algal growth. We also now know that the physical habitat template of rivers is a primary selector of aquatic plant communities. As such, nutrient enrichment impacts on aquatic plant communities are strongly influenced, both directly and indirectly, by physical habitat. A new conceptual model is proposed that incorporates these findings. The application of the model to management, system remediation, target setting, and our understanding of multi-stressor systems is discussed. We also look to the future and the potential for new numerical models to guide management.

2.
Biol Rev Camb Philos Soc ; 92(2): 1128-1141, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27062094

RESUMEN

Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small-scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta-analysis of the outcomes of plant-herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between-taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore-plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed-nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed-nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore-plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant-herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top-down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.


Asunto(s)
Ecosistema , Herbivoria , Fenómenos Fisiológicos de las Plantas , Animales , Biomasa , Densidad de Población
3.
Sci Total Environ ; 543(Pt A): 230-238, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26584073

RESUMEN

Historically, close attention has been paid to negative impacts associated with nutrient loads to streams and rivers, but today hydromorphological alterations are considered increasingly implicated when lowland streams do not achieve good ecological status. Here, we explore if trait-abundance patterns of aquatic plants change along gradients in hydromorphological degradation and eutrophication in lowland stream sites located in Denmark. Specifically, we hypothesised that: i) changes in trait-abundance patterns occur along gradients in hydromorphological degradation and ii) trait-abundance patterns can serve to disentangle effects of eutrophication and hydromorphological degradation in lowland streams reflecting that the mechanisms behind changes differ. We used monitoring data from a total of 147 stream reaches with combined data on aquatic plant species abundance, catchment land use, hydromorphological alterations (i.e. planform, cross section, weed cutting) and water chemistry parameters. Traits related to life form, dispersal, reproduction and survival together with ecological preference values for nutrients and light (Ellenberg N and L) were allocated to 41 species representing 79% of the total species pool. We found clear evidence that habitat degradation (hydromorphological alterations and eutrophication) mediated selective changes in the trait-abundance patterns of the plant community. Specific traits could distinguish hydromorphological degradation (free-floating, surface; anchored floating leaves; anchored heterophylly) from eutrophication (free-floating, submerged; leaf area). We provide a conceptual framework for interpretation of how eutrophication and hydromorphological degradation interact and how this is reflected in trait-abundance patterns in aquatic plant communities in lowland streams. Our findings support the merit of trait-based approaches in biomonitoring as they shed light on mechanisms controlling structural changes under environmental stress. The ability to disentangle several stressors is particularly important in lowland stream environments where several stressors act in concert since the impact of the most important stressor can be targeted first, which is essential to improve the ecological status.


Asunto(s)
Organismos Acuáticos/fisiología , Monitoreo del Ambiente/métodos , Plantas , Dinamarca , Ecosistema , Eutrofización , Ríos/química , Estrés Fisiológico , Contaminantes Químicos del Agua/análisis
4.
PLoS One ; 9(7): e104034, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25077615

RESUMEN

Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems.


Asunto(s)
Anseriformes/fisiología , Herbivoria , Plantas , Animales , Conservación de los Recursos Energéticos , Ecosistema , Modelos Teóricos , Ríos
5.
PLoS One ; 8(2): e56287, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405270

RESUMEN

Abundant herbivores can damage plants and so cause conflict with conservation, agricultural, and fisheries interests. Management of herbivore populations is a potential tool to alleviate such conflicts but may raise concerns about the economic and ethical costs of implementation, especially if the herbivores are 'charismatic' and popular with the public. Thus it is critical to evaluate the probability of achieving the desired ecological outcomes before proceeding to a field trial. Here we assessed the potential for population control to resolve a conflict of non-breeding swans grazing in river catchments. We used a mathematical model to evaluate the consequences of three population management strategies; (a) reductions in reproductive success, (b) removal of individuals, and (c) reduced reproductive success and removal of individuals combined. This model gave accurate projections of historical changes in population size for the two rivers for which data were available. Our model projected that the River Frome swan population would increase by 54%, from 257 to 397 individuals, over 17 years in the absence of population control. Removal of ≥60% of non-breeding individuals each year was projected to reduce the catchment population below the level for which grazing conflicts have been previously reported. Reducing reproductive success, even to 0 eggs per nest, failed to achieve the population reduction required. High adult and juvenile survival probabilities (>0.7) and immigration from outside of the catchment limited the effects of management on population size. Given the high, sustained effort required, population control does not represent an effective management option for preventing the grazing conflicts in river catchments. Our study highlights the need to evaluate the effects of different management techniques, both alone and in combination, prior to field trials. Population models, such as the one presented here, can provide a cost-effective and ethical means of such evaluations.


Asunto(s)
Conducta Alimentaria/fisiología , Herbivoria/fisiología , Modelos Teóricos , Reproducción/fisiología , Animales , Patos , Densidad de Población , Dinámica Poblacional , Ríos
6.
PLoS One ; 7(11): e49824, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166777

RESUMEN

Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem response to environmental change. However, studies of plant community regulation have seldom considered how responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal patterns in the regulation of plant community structure and function by multiple factors.


Asunto(s)
Ecosistema , Ambiente , Plantas , Animales , Biomasa , Biota , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...