Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 71(2): 207-218, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38656811

RESUMEN

Pseudomonas aeruginosa causes chronic lung infection in cystic fibrosis (CF), resulting in structural lung damage and progressive pulmonary decline. P. aeruginosa in the CF lung undergoes numerous changes, adapting to host-specific airway pressures while establishing chronic infection. P. aeruginosa undergoes lipid A structural modification during CF chronic infection that is not seen in any other disease state. Lipid A, the membrane anchor of LPS (i.e., endotoxin), comprises the majority of the outer membrane of Gram-negative bacteria and is a potent Toll-like receptor 4 (TLR4) agonist. The structure of P. aeruginosa lipid A is intimately linked with its recognition by TLR4 and subsequent immune response. Prior work has identified P. aeruginosa strains with altered lipid A structures that arise during chronic CF lung infection; however, the impact of the P. aeruginosa lipid A structure on airway disease has not been investigated. Here, we show that P. aeruginosa lipid A lacks PagL-mediated deacylation during human airway infection using a direct-from-sample mass spectrometry approach on human BAL fluid. This structure triggers increased proinflammatory cytokine production by primary human macrophages. Furthermore, alterations in lipid A 2-hydroxylation impact cytokine response in a site-specific manner, independent of CF transmembrane conductance regulator function. It is interesting that there is a CF-specific reduction in IL-8 secretion within the epithelial-cell compartment that only occurs in CF bronchial epithelial cells when infected with CF-adapted P. aeruginosa that lacks PagL-mediated lipid A deacylation. Taken together, we show that P. aeruginosa alters its lipid A structure during acute lung infection and that this lipid A structure induces stronger signaling through TLR4.


Asunto(s)
Fibrosis Quística , Lípido A , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/inmunología , Humanos , Lípido A/metabolismo , Lípido A/inmunología , Fibrosis Quística/microbiología , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/inmunología , Citocinas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/microbiología , Pulmón/inmunología , Pulmón/metabolismo
2.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38261394

RESUMEN

Selfish mitochondrial DNA (mtDNA) mutations are variants that can proliferate within cells and enjoy a replication or transmission bias without fitness benefits for the host. mtDNA deletions in Caenorhabditis elegans can reach high heteroplasmic frequencies despite significantly reducing fitness, illustrating how new mtDNA variants can give rise to genetic conflict between different levels of selection and between the nuclear and mitochondrial genomes. During a mutation accumulation experiment in C. elegans, a 1,034-bp deletion originated spontaneously and reached an 81.7% frequency within an experimental evolution line. This heteroplasmic mtDNA deletion, designated as meuDf1, eliminated portions of 2 protein-coding genes (coxIII and nd4) and tRNA-thr in entirety. mtDNA copy number in meuDf1 heteroplasmic individuals was 35% higher than in individuals with wild-type mitochondria. After backcrossing into a common genetic background, the meuDf1 mitotype was associated with reduction in several fitness traits and independent competition experiments found a 40% reduction in composite fitness. Experiments that relaxed individual selection by single individual bottlenecks demonstrated that the deletion-bearing mtDNA possessed a strong transmission bias, thereby qualifying it as a novel selfish mitotype.


Asunto(s)
Caenorhabditis elegans , Genoma Mitocondrial , Animales , Humanos , Caenorhabditis elegans/genética , Amigos , Mitocondrias/genética , ADN Mitocondrial/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...