Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4262, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802387

RESUMEN

Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.


Asunto(s)
Fijación del Nitrógeno , Filogenia , Nódulos de las Raíces de las Plantas , Simbiosis , Simbiosis/genética , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Evolución Molecular , Evolución Biológica , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/microbiología
2.
Syst Biol ; 72(4): 856-873, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073863

RESUMEN

Applications of molecular phylogenetic approaches have uncovered evidence of hybridization across numerous clades of life, yet the environmental factors responsible for driving opportunities for hybridization remain obscure. Verbal models implicating geographic range shifts that brought species together during the Pleistocene have often been invoked, but quantitative tests using paleoclimatic data are needed to validate these models. Here, we produce a phylogeny for Heuchereae, a clade of 15 genera and 83 species in Saxifragaceae, with complete sampling of recognized species, using 277 nuclear loci and nearly complete chloroplast genomes. We then employ an improved framework with a coalescent simulation approach to test and confirm previous hybridization hypotheses and identify one new intergeneric hybridization event. Focusing on the North American distribution of Heuchereae, we introduce and implement a newly developed approach to reconstruct potential past distributions for ancestral lineages across all species in the clade and across a paleoclimatic record extending from the late Pliocene. Time calibration based on both nuclear and chloroplast trees recovers a mid- to late-Pleistocene date for most inferred hybridization events, a timeframe concomitant with repeated geographic range restriction into overlapping refugia. Our results indicate an important role for past episodes of climate change, and the contrasting responses of species with differing ecological strategies, in generating novel patterns of range contact among plant communities and therefore new opportunities for hybridization. The new ancestral niche method flexibly models the shape of niche while incorporating diverse sources of uncertainty and will be an important addition to the current comparative methods toolkit. [Ancestral niche reconstruction; hybridization; paleoclimate; pleistocene.].


Asunto(s)
Hibridación Genética , Filogenia , Filogeografía , Teorema de Bayes
3.
Evolution ; 77(3): 836-851, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723908

RESUMEN

The correlated evolution of multiple characters is a crucial aspect of evolutionary change. If change in a particular character influences the evolution of a separate trait, then modeling these features independently can mislead our understanding of the evolutionary process. Progress toward jointly modeling several characters has involved modeling multivariate evolution of the same class of character, but there are far fewer options when jointly modeling traits when one character is discrete and the other is continuous. Here, we develop such a framework to explicitly estimate the joint likelihood for discrete and continuous characters. Specifically, our model combines the probability of observing the continuous character under a generalized OU process with the probability of the discrete character under a hidden Markov model, linked by a shared underlying regime. We use simulation studies to demonstrate that this approach, hOUwie, can accurately evaluate parameter values across a broad set of models. We then apply our model to test whether fleshy and dry fruits of Ericaceae lineages are correlated with their climatic niche evolution as represented by the aridity index. Consistent with expectations, we find that the climatic niche of lineages with fleshy fruits is more conserved while lineages with dry fruits have higher rates of climatic niche evolution and a more humid climatic optimum.


Asunto(s)
Evolución Biológica , Clima , Filogenia , Simulación por Computador , Probabilidad , Fenotipo
4.
Syst Biol ; 72(1): 50-61, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35861420

RESUMEN

The fossilized birth-death (FBD) model is a naturally appealing way of directly incorporating fossil information when estimating diversification rates. However, an important yet often overlooked property of the original FBD derivation is that it distinguishes between two types of sampled lineages. Here, we first discuss and demonstrate the impact of severely undersampling, and even not including fossils that represent samples of lineages that also had sampled descendants. We then explore the benefits of including fossils, generally, by implementing and then testing two types of FBD models, including one that converts a fossil set into stratigraphic ranges, in more complex likelihood-based models that assume multiple rate classes across the tree. Under various simulation scenarios, including a scenario that exists far outside the set of models we evaluated, including fossils rarely outperform analyses that exclude them altogether. At best, the inclusion of fossils improves precision but does not influence bias. Similarly, we found that converting the fossil set to stratigraphic ranges, which is one way to remedy the effects of undercounting the number of k-type fossils, results in turnover rates and extinction fraction estimates that are generally underestimated. Although fossils remain essential for understanding diversification through time, in the specific case of understanding diversification given an existing, largely modern tree, they are not especially beneficial. [Fossilized birth-death; fossils; MiSSE; state speciation extinction; stratigraphic ranges; turnover rate.].


Asunto(s)
Fósiles , Especiación Genética , Filogenia , Funciones de Verosimilitud , Tiempo
5.
Evolution ; 76(7): 1420-1433, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35661352

RESUMEN

Estimates of diversification rates at the tips of a phylogeny provide a flexible approach for correlation analyses with multiple traits and to map diversification rates in space while also avoiding the uncertainty of deep time rate reconstructions. Available methods for tip rate estimation make different assumptions, and thus their accuracy usually depends on the characteristics of the underlying model generating the tree. Here, we introduce MiSSE, a trait-free, state-dependent speciation and extinction approach that can be used to estimate varying speciation, extinction, net diversification, turnover, and extinction fractions at the tips of the tree. We compare the accuracy of tip rates inferred by MiSSE against similar methods and demonstrate that, due to certain characteristics of the model, the error is generally low across a broad range of speciation and extinction scenarios. MiSSE can be used alongside regular phylogenetic comparative methods in trait-related diversification hypotheses, and we also describe a simple correction to avoid pseudoreplication from sister tips in analyses of independent contrasts. Finally, we demonstrate the capabilities of MiSSE, with a renewed focus on classic comparative methods, to examine the correlation between plant height and turnover rates in eucalypts, a species-rich lineage of flowering plants.


Asunto(s)
Extinción Biológica , Especiación Genética , Fenotipo , Filogenia
6.
Am Nat ; 199(2): 194-205, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35077278

RESUMEN

In 1974, G. Ledyard Stebbins provided a metaphor illustrating how spatial gradients of biodiversity observed today are by-products of the way environment-population interactions drive species diversification through time. We revisit the narrative behind Stebbins's "cradles" and "museums" of biodiversity to debate two points. First, the usual high-speciation versus low-extinction and tropical versus temperate dichotomies are oversimplifications of the original metaphor and may obscure how gradients of diversity are formed. Second, the way in which we use modern gradients of biodiversity to interpret the potential historical processes that generated them are often still biased by the reasons that motivated Stebbins to propose his original metaphor. Specifically, the field has not yet abandoned the idea that species-rich areas and "basal lineages" indicate centers of origin, nor has it fully appreciated the role of traits as regulators of environment-population dynamics. We acknowledge that the terms "cradles" and "museums" are popular in the literature and that terminologies can evolve with the requirements of the field. However, we also argue that the concepts of cradles and museums have outlived their utility in studies of biogeography and macroevolution and should be replaced by discussions of actual processes at play.


Asunto(s)
Biodiversidad , Museos , Especiación Genética , Filogenia , Dinámica Poblacional
7.
Mol Biol Evol ; 38(4): 1641-1652, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33306127

RESUMEN

Ultraconserved elements (UCEs) are stretches of hundreds of nucleotides with highly conserved cores flanked by variable regions. Although the selective forces responsible for the preservation of UCEs are unknown, they are nonetheless believed to contain phylogenetically meaningful information from deep to shallow divergence events. Phylogenetic applications of UCEs assume the same degree of rate heterogeneity applies across the entire locus, including variable flanking regions. We present a Wright-Fisher model of selection on nucleotides (SelON) which includes the effects of mutation, drift, and spatially varying, stabilizing selection for an optimal nucleotide sequence. The SelON model assumes the strength of stabilizing selection follows a position-dependent Gaussian function whose exact shape can vary between UCEs. We evaluate SelON by comparing its performance to a simpler and spatially invariant GTR+Γ model using an empirical data set of 400 vertebrate UCEs used to determine the phylogenetic position of turtles. We observe much improvement in model fit of SelON over the GTR+Γ model, and support for turtles as sister to lepidosaurs. Overall, the UCE-specific parameters SelON estimates provide a compact way of quantifying the strength and variation in selection within and across UCEs. SelON can also be extended to include more realistic mapping functions between sequence and stabilizing selection as well as allow for greater levels of rate heterogeneity. By more explicitly modeling the nature of selection on UCEs, SelON and similar approaches can be used to better understand the biological mechanisms responsible for their preservation across highly divergent taxa and long evolutionary time scales.


Asunto(s)
Modelos Genéticos , Selección Genética , Secuencia de Bases , Secuencia Conservada , Filogenia
8.
Science ; 370(6522): 1343-1348, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303617

RESUMEN

The tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1283 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time. Paradoxically, the highest speciation rates are in lineages from regions with low species diversity, which are generally cold, dry, unstable environments. Our results reveal a model in which species are forming faster in environmental extremes but have accumulated in moderate environments to form tropical biodiversity hotspots.


Asunto(s)
Biodiversidad , Aves/clasificación , Aves/genética , Animales , Especiación Genética , Filogenia
9.
BMC Evol Biol ; 20(1): 109, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32842959

RESUMEN

BACKGROUND: For decades, codon usage has been used as a measure of adaptation for translational efficiency and translation accuracy of a gene's coding sequence. These patterns of codon usage reflect both the selective and mutational environment in which the coding sequences evolved. Over this same period, gene transfer between lineages has become widely recognized as an important biological phenomenon. Nevertheless, most studies of codon usage implicitly assume that all genes within a genome evolved under the same selective and mutational environment, an assumption violated when introgression occurs. In order to better understand the effects of introgression on codon usage patterns and vice versa, we examine the patterns of codon usage in Lachancea kluyveri, a yeast which has experienced a large introgression. We quantify the effects of mutation bias and selection for translation efficiency on the codon usage pattern of the endogenous and introgressed exogenous genes using a Bayesian mixture model, ROC SEMPPR, which is built on mechanistic assumptions about protein synthesis and grounded in population genetics. RESULTS: We find substantial differences in codon usage between the endogenous and exogenous genes, and show that these differences can be largely attributed to differences in mutation bias favoring A/T ending codons in the endogenous genes while favoring C/G ending codons in the exogenous genes. Recognizing the two different signatures of mutation bias and selection improves our ability to predict protein synthesis rate by 42% and allowed us to accurately assess the decaying signal of endogenous codon mutation and preferences. In addition, using our estimates of mutation bias and selection, we identify Eremothecium gossypii as the closest relative to the exogenous genes, providing an alternative hypothesis about the origin of the exogenous genes, estimate that the introgression occurred ∼6×108 generation ago, and estimate its historic and current selection against mismatched codon usage. CONCLUSIONS: Our work illustrates how mechanistic, population genetic models like ROC SEMPPR can separate the effects of mutation and selection on codon usage and provide quantitative estimates from sequence data.


Asunto(s)
Uso de Codones , Genética de Población , Modelos Genéticos , Saccharomycetales/genética , Selección Genética , Teorema de Bayes , Mutación
10.
New Phytol ; 228(2): 485-493, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32579721

RESUMEN

Leaf reflectance spectra have been increasingly used to assess plant diversity. However, we do not yet understand how spectra vary across the tree of life or how the evolution of leaf traits affects the differentiation of spectra among species and lineages. Here we describe a framework that integrates spectra with phylogenies and apply it to a global dataset of over 16 000 leaf-level spectra (400-2400 nm) for 544 seed plant species. We test for phylogenetic signal in spectra, evaluate their ability to classify lineages, and characterize their evolutionary dynamics. We show that phylogenetic signal is present in leaf spectra but that the spectral regions most strongly associated with the phylogeny vary among lineages. Despite among-lineage heterogeneity, broad plant groups, orders, and families can be identified from reflectance spectra. Evolutionary models also reveal that different spectral regions evolve at different rates and under different constraint levels, mirroring the evolution of their underlying traits. Leaf spectra capture the phylogenetic history of seed plants and the evolutionary dynamics of leaf chemistry and structure. Consequently, spectra have the potential to provide breakthrough assessments of leaf evolution and plant phylogenetic diversity at global scales.


Asunto(s)
Hojas de la Planta , Semillas , Filogenia , Plantas
11.
BMC Genomics ; 21(1): 370, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434474

RESUMEN

BACKGROUND: Researchers often measure changes in gene expression across conditions to better understand the shared functional roles and regulatory mechanisms of different genes. Analogous to this is comparing gene expression across species, which can improve our understanding of the evolutionary processes shaping the evolution of both individual genes and functional pathways. One area of interest is determining genes showing signals of coevolution, which can also indicate potential functional similarity, analogous to co-expression analysis often performed across conditions for a single species. However, as with any trait, comparing gene expression across species can be confounded by the non-independence of species due to shared ancestry, making standard hypothesis testing inappropriate. RESULTS: We compared RNA-Seq data across 18 fungal species using a multivariate Brownian Motion phylogenetic comparative method (PCM), which allowed us to quantify coevolution between protein pairs while directly accounting for the shared ancestry of the species. Our work indicates proteins which physically-interact show stronger signals of coevolution than randomly-generated pairs. Interactions with stronger empirical and computational evidence also showing stronger signals of coevolution. We examined the effects of number of protein interactions and gene expression levels on coevolution, finding both factors are overall poor predictors of the strength of coevolution between a protein pair. Simulations further demonstrate the potential issues of analyzing gene expression coevolution without accounting for shared ancestry in a standard hypothesis testing framework. Furthermore, our simulations indicate the use of a randomly-generated null distribution as a means of determining statistical significance for detecting coevolving genes with phylogenetically-uncorrected correlations, as has previously been done, is less accurate than PCMs, although is a significant improvement over standard hypothesis testing. These methods are further improved by using a phylogenetically-corrected correlation metric. CONCLUSIONS: Our work highlights potential benefits of using PCMs to detect gene expression coevolution from high-throughput omics scale data. This framework can be built upon to investigate other evolutionary hypotheses, such as changes in transcription regulatory mechanisms across species.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Hongos/genética , Expresión Génica , Proteínas Fúngicas/metabolismo , Hongos/clasificación , Hongos/metabolismo , Modelos Genéticos , Fenotipo , Filogenia , Unión Proteica
12.
Evol Bioinform Online ; 16: 1176934320901721, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32109980

RESUMEN

Phylogenetic comparative analyses use trees of evolutionary relationships between species to understand their evolution and ecology. A phylogenetic tree of n taxa can be algebraically transformed into an n by n squared symmetric phylogenetic covariance matrix C where each element c ij in C represents the affinity between extant species i and extant species j. This matrix C is used internally in several comparative methods: for example, it is often inverted to compute the likelihood of the data under a model. However, if the matrix is ill-conditioned (ie, if κ , defined by the ratio of the maximum eigenvalue of C to the minimum eigenvalue of C , is too high), this inversion may not be stable, and thus neither will be the calculation of the likelihood or parameter estimates that are based on optimizing the likelihood. We investigate this potential issue and propose several methods to attempt to remedy this issue.

14.
Nat Ecol Evol ; 3(2): 191-199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30478309

RESUMEN

Trophic ecology is thought to exert a profound influence on biodiversity, but the specifics of the process are rarely examined at large spatial and evolutionary scales. We investigate how trophic position and diet breadth influence functional trait evolution in one of the most species-rich and complex vertebrate assemblages, coral reef fishes, within a large-scale phylogenetic framework. We show that, in contrast with established theory, functional traits evolve fastest in trophic specialists with narrow diet breadths at both very low and high trophic positions. Top trophic level specialists exhibit the most functional diversity, while omnivorous taxa with intermediate trophic positions and wide diet breadth have the least functional diversity. Our results reveal the importance of trophic position in shaping evolutionary dynamics while simultaneously highlighting the incredible trophic and functional diversity present in coral reef fish assemblages.


Asunto(s)
Evolución Biológica , Arrecifes de Coral , Peces/fisiología , Rasgos de la Historia de Vida , Animales , Biodiversidad , Dieta , Filogenia
15.
Mol Biol Evol ; 36(4): 834-851, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30521036

RESUMEN

We present a new phylogenetic approach, selection on amino acids and codons (SelAC), whose substitution rates are based on a nested model linking protein expression to population genetics. Unlike simpler codon models that assume a single substitution matrix for all sites, our model more realistically represents the evolution of protein-coding DNA under the assumption of consistent, stabilizing selection using a cost-benefit approach. This cost-benefit approach allows us to generate a set of 20 optimal amino acid-specific matrix families using just a handful of parameters and naturally links the strength of stabilizing selection to protein synthesis levels, which we can estimate. Using a yeast data set of 100 orthologs for 6 taxa, we find SelAC fits the data much better than popular models by 104-105 Akike information criterion units adjusted for small sample bias. Our results also indicated that nested, mechanistic models better predict observed data patterns highlighting the improvement in biological realism in amino acid sequence evolution that our model provides. Additional parameters estimated by SelAC indicate that a large amount of nonphylogenetic, but biologically meaningful, information can be inferred from existing data. For example, SelAC prediction of gene-specific protein synthesis rates correlates well with both empirical (r=0.33-0.48) and other theoretical predictions (r=0.45-0.64) for multiple yeast species. SelAC also provides estimates of the optimal amino acid at each site. Finally, because SelAC is a nested approach based on clearly stated biological assumptions, future modifications, such as including shifts in the optimal amino acid sequence within or across lineages, are possible.


Asunto(s)
Sustitución de Aminoácidos , Técnicas Genéticas , Modelos Genéticos , Filogenia , Selección Genética , Genética de Población/métodos
16.
Evolution ; 72(11): 2308-2324, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30226270

RESUMEN

The state-dependent speciation and extinction (SSE) models have recently been criticized due to their high rates of "false positive" results. Many researchers have advocated avoiding SSE models in favor of other "nonparametric" or "semiparametric" approaches. The hidden Markov modeling (HMM) approach provides a partial solution to the issues of model adequacy detected with SSE models. The inclusion of "hidden states" can account for rate heterogeneity observed in empirical phylogenies and allows for reliable detection of state-dependent diversification or diversification shifts independent of the trait of interest. However, the adoption of HMM has been hampered by the interpretational challenges of what exactly a "hidden state" represents, which we clarify herein. We show that HMMs in combination with a model-averaging approach naturally account for hidden traits when examining the meaningful impact of a suspected "driver" of diversification. We also extend the HMM to the geographic state-dependent speciation and extinction (GeoSSE) model. We test the efficacy of our "GeoHiSSE" extension with both simulations and an empirical dataset. On the whole, we show that hidden states are a general framework that can distinguish heterogeneous effects of diversification attributed to a focal character.


Asunto(s)
Extinción Biológica , Especiación Genética , Modelos Teóricos , Geografía , Cadenas de Markov , Filogenia , Dispersión de las Plantas , Tracheophyta/clasificación , Tracheophyta/fisiología
17.
PeerJ ; 6: e5179, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002984

RESUMEN

BACKGROUND: DNA sequences are pivotal for a wide array of research in biology. Large sequence databases, like GenBank, provide an amazing resource to utilize DNA sequences for large scale analyses. However, many sequence records on GenBank contain more than one gene or are portions of genomes. Inconsistencies in the way genes are annotated and the numerous synonyms a single gene may be listed under provide major challenges for extracting large numbers of subsequences for comparative analysis across taxa. At present, there is no easy way to extract portions from many GenBank accessions based on annotations where gene names may vary extensively. RESULTS: The R package AnnotationBustR allows users to extract sequences based on GenBank annotations through the ACNUC retrieval system given search terms of gene synonyms and accession numbers. AnnotationBustR extracts subsequences of interest and then writes them to a FASTA file for users to employ in their research endeavors. CONCLUSION: FASTA files of extracted subsequences and accession tables generated by AnnotationBustR allow users to quickly find and extract subsequences from GenBank accessions. These sequences can then be incorporated in various analyses, like the construction of phylogenies to test a wide range of ecological and evolutionary hypotheses.

18.
Am J Bot ; 105(3): 417-432, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29746717

RESUMEN

PREMISE OF THE STUDY: The study of very large and very old clades holds the promise of greater insights into evolution across the tree of life. However, there has been a fair amount of criticism regarding the interpretations and quality of studies to date, with some suggesting that detailed studies carried out on smaller, tractable scales should be preferred over the increasingly grand syntheses of these data. METHODS: We provided in detail our trials and tribulations of compiling a large, sparsely sampled matrix from GenBank data and inferring a well-supported, time-calibrated phylogeny of Campanulidae. We also used a simulation approach to assess tree quality and to study the value of using very large, comprehensive phylogenies in a comparative context. KEY RESULTS: A robust and well-supported phylogeny can be produced as long as automated procedures are supplemented with some human intervention. In the case of campanulids, the overall topology may be driven not only by particular genes, but also particular sequences for a gene. We also determined that estimates of divergence times should be fairly robust to issues related to clade-specific heterogeneity. Finally, we demonstrated how relying on results from smaller, younger clades are prone to produce biased interpretations of tropical to temperate evolution across campanulids as a whole. CONCLUSIONS: While we were both surprised and encouraged by the robust and fairly well-resolved, comprehensive phylogeny of campanulids, challenges still remain. Nevertheless, large phylogenies are inherently valuable in a comparative context if only to attenuate the issue of ascertainment bias.


Asunto(s)
Secuencia de Bases , Evolución Biológica , ADN de Plantas/análisis , Genes de Plantas , Magnoliopsida/genética , Filogenia , Evolución Molecular , Análisis de Secuencia de ADN
19.
Mol Phylogenet Evol ; 116: 136-140, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28887148

RESUMEN

Phylogeography seeks to discover the evolutionary processes that have given rise to organismal and genetic diversity. This requires explicit hypotheses (i.e., models) to be evaluated with genetic data in order to identify those hypotheses that best explain the data. In recent years, advancements in the model-based tools used to estimate phylogeographic parameters of interest such as gene flow, divergence time, and relationships among groups have been made. However, given the complexity of these models, available methods can typically only compare a handful of possible hypotheses, requiring researchers to specify in advance the small set of models to consider. Without formal quantitative approaches to model selection, researchers must rely on their intuition to formulate the model space to be explored. We explore the adequacy of intuitive choices made by researchers during the process of data analysis by reanalyzing 20 empirical phylogeographic datasets using PHRAPL, an objective tool for phylogeographic model selection. We show that the best models for most datasets include both gene flow and population divergence parameters, and that species tree methods (which do not consider gene flow) tend to be overly simplistic for many phylogeographic systems. Objective approaches to phylogeographic model selection offer an important complement to researcher intuition.


Asunto(s)
Modelos Genéticos , Filogeografía , Animales , Variación Genética , Filogenia , Probabilidad
20.
Syst Biol ; 66(6): 1045-1053, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28204782

RESUMEN

The demographic history of most species is complex, with multiple evolutionary processes combining to shape the observed patterns of genetic diversity. To infer this history, the discipline of phylogeography has (to date) used models that simplify the historical demography of the focal organism, for example by assuming or ignoring ongoing gene flow between populations or by requiring a priori specification of divergence history. Since no single model incorporates every possible evolutionary process, researchers rely on intuition to choose the models that they use to analyze their data. Here, we describe an approximate likelihood approach that reduces this reliance on intuition. PHRAPL allows users to calculate the probability of a large number of complex demographic histories given a set of gene trees, enabling them to identify the most likely underlying model and estimate parameters for a given system. Available model parameters include coalescence time among populations or species, gene flow, and population size. We describe the method and test its performance in model selection and parameter estimation using simulated data. We also compare model probabilities estimated using our approximate likelihood method to those obtained using standard analytical likelihood. The method performs well under a wide range of scenarios, although this is sometimes contingent on sampling many loci. In most scenarios, as long as there are enough loci and if divergence among populations is sufficiently deep, PHRAPL can return the true model in nearly all simulated replicates. Parameter estimates from the method are also generally accurate in most cases. PHRAPL is a valuable new method for phylogeographic model selection and will be particularly useful as a tool to more extensively explore demographic model space than is typically done or to estimate parameters for complex models that are not readily implemented using current methods. Estimating relevant parameters using the most appropriate demographic model can help to sharpen our understanding of the evolutionary processes giving rise to phylogeographic patterns. [AIC; grid search; isolation-with-migration; migration rate; multispecies coalescent; parameter optimization; population genetics; tree topologies.].


Asunto(s)
Modelos Biológicos , Filogeografía/métodos , Evolución Biológica , Simulación por Computador , Variación Genética , Funciones de Verosimilitud , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...