Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci Methods ; 406: 110131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583588

RESUMEN

BACKGROUND: The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain. NEW METHOD: Here we exploit recent advances in the development of wearable optically pumped magnetometers (OPMs) which can be flexibly arranged to provide coverage of both the spinal cord and the brain in relatively unconstrained environments. This system for magnetospinoencephalography (MSEG) measures both spinal and cortical signals simultaneously by employing custom-made scanning casts. RESULTS: We evidence the utility of such a system by recording spinal and cortical evoked responses to median nerve stimulation at the wrist. MSEG revealed early (10 - 15 ms) and late (>20 ms) responses at the spinal cord, in addition to typical cortical evoked responses (i.e., N20). COMPARISON WITH EXISTING METHODS: Early spinal evoked responses detected were in line with conventional somatosensory evoked potential recordings. CONCLUSION: This MSEG system demonstrates the novel ability for concurrent non-invasive millisecond imaging of brain and spinal cord.


Asunto(s)
Magnetoencefalografía , Médula Espinal , Humanos , Médula Espinal/fisiología , Médula Espinal/diagnóstico por imagen , Magnetoencefalografía/instrumentación , Magnetoencefalografía/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Masculino , Femenino , Nervio Mediano/fisiología , Nervio Mediano/diagnóstico por imagen , Potenciales Evocados Somatosensoriales/fisiología , Magnetometría/instrumentación , Magnetometría/métodos , Adulto Joven , Estimulación Eléctrica/instrumentación
2.
Sci Rep ; 14(1): 2882, 2024 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311614

RESUMEN

When planning for epilepsy surgery, multiple potential sites for resection may be identified through anatomical imaging. Magnetoencephalography (MEG) using optically pumped sensors (OP-MEG) is a non-invasive functional neuroimaging technique which could be used to help identify the epileptogenic zone from these candidate regions. Here we test the utility of a-priori information from anatomical imaging for differentiating potential lesion sites with OP-MEG. We investigate a number of scenarios: whether to use rigid or flexible sensor arrays, with or without a-priori source information and with or without source modelling errors. We simulated OP-MEG recordings for 1309 potential lesion sites identified from anatomical images in the Multi-centre Epilepsy Lesion Detection (MELD) project. To localise the simulated data, we used three source inversion schemes: unconstrained, prior source locations at centre of the candidate sites, and prior source locations within a volume around the lesion location. We found that prior knowledge of the candidate lesion zones made the inversion robust to errors in sensor gain, orientation and even location. When the reconstruction was too highly restricted and the source assumptions were inaccurate, the utility of this a-priori information was undermined. Overall, we found that constraining the reconstruction to the region including and around the participant's potential lesion sites provided the best compromise of robustness against modelling or measurement error.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Magnetoencefalografía/métodos , Simulación por Computador , Neuroimagen Funcional , Encéfalo/diagnóstico por imagen , Electroencefalografía
3.
Neuroimage ; 278: 120252, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37437702

RESUMEN

Most neuroimaging techniques require the participant to remain still for reliable recordings to be made. Optically pumped magnetometer (OPM) based magnetoencephalography (OP-MEG) however, is a neuroimaging technique which can be used to measure neural signals during large participant movement (approximately 1 m) within a magnetically shielded room (MSR) (Boto et al., 2018; Seymour et al., 2021). Nevertheless, environmental magnetic fields vary both spatially and temporally and OPMs can only operate within a limited magnetic field range, which constrains participant movement. Here we implement real-time updates to electromagnetic coils mounted on-board of the OPMs, to cancel out the changing background magnetic fields. The coil currents were chosen based on a continually updating harmonic model of the background magnetic field, effectively implementing homogeneous field correction (HFC) in real-time (Tierney et al., 2021). During a stationary, empty room recording, we show an improvement in very low frequency noise of 24 dB. In an auditory paradigm, during participant movement of up to 2 m within a magnetically shielded room, introduction of the real-time correction more than doubled the proportion of trials in which no sensor saturated recorded outside of a 50 cm radius from the optimally-shielded centre of the room. The main advantage of such model-based (rather than direct) feedback is that it could allow one to correct field components along unmeasured OPM axes, potentially mitigating sensor gain and calibration issues (Borna et al., 2022).


Asunto(s)
Magnetoencefalografía , Dispositivos Electrónicos Vestibles , Humanos , Magnetoencefalografía/métodos , Movimiento , Campos Magnéticos , Neuroimagen , Encéfalo
4.
Sci Rep ; 13(1): 4623, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944674

RESUMEN

Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure.


Asunto(s)
Epilepsias Parciales , Epilepsia , Adulto , Niño , Humanos , Magnetoencefalografía/métodos , Convulsiones/diagnóstico , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsias Parciales/diagnóstico , Epilepsias Parciales/cirugía , Encéfalo
5.
Sci Rep ; 12(1): 13561, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945239

RESUMEN

Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.


Asunto(s)
Neuroimagen Funcional , Magnetoencefalografía , Encéfalo , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Magnetoencefalografía/métodos
6.
Neuroimage ; 258: 119338, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35636738

RESUMEN

In this study we explore the interference rejection and spatial sampling properties of multi-axis Optically Pumped Magnetometer (OPM) data. We use both vector spherical harmonics and eigenspectra to quantify how well an array can separate neuronal signal from environmental interference while adequately sampling the entire cortex. We found that triaxial OPMs have superb noise rejection properties allowing for very high orders of interference (L=6) to be accounted for while minimally affecting the neural space (2dB attenuation for a 60-sensor triaxial system). We show that at least 11th order (143 spatial degrees of freedom) irregular solid harmonics or 95 eigenvectors of the lead field are needed to model the neural space for OPM data (regardless of number of axes measured). This can be adequately sampled with 75-100 equidistant triaxial sensors (225-300 channels) or 200 equidistant radial channels. In other words, ordering the same number of channels in triaxial (rather than purely radial) configuration may give significant advantages not only in terms of external noise rejection but also by minimizing cost, weight and cross-talk.


Asunto(s)
Magnetoencefalografía , Humanos
7.
Neuroimage ; 247: 118834, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34933122

RESUMEN

One of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed - the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable. This opens up a range of exciting experimental and clinical opportunities for OPM-based MEG experiments, including paediatric studies, and the incorporation of naturalistic movements into neuroimaging paradigms. However, OPMs face some unique challenges in terms of interference suppression, especially in situations involving mobile participants, and when OPMs are integrated with electrical equipment required for naturalistic paradigms, such as motion capture systems. Here we briefly review various hardware solutions for OPM interference suppression. We then outline several signal processing strategies aimed at increasing the signal from neuromagnetic sources. These include regression-based strategies, temporal filtering and spatial filtering approaches. The focus is on the practical application of these signal processing algorithms to OPM data. In a similar vein, we include two worked-through experiments using OPM data collected from a whole-head sensor array. These tutorial-style examples illustrate how the steps for suppressing external interference can be implemented, including the associated data and code so that researchers can try the pipelines for themselves. With the popularity of OPM-based MEG rising, there will be an increasing need to deal with interference suppression. We hope this practical paper provides a resource for OPM-based MEG researchers to build upon.


Asunto(s)
Magnetoencefalografía/instrumentación , Neuroimagen/instrumentación , Algoritmos , Diseño de Equipo , Movimientos de la Cabeza , Humanos , Cuero Cabelludo , Procesamiento de Señales Asistido por Computador
8.
Neuroimage ; 244: 118604, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555493

RESUMEN

Optically pumped magnetometer-based magnetoencephalography (OP-MEG) can be used to measure neuromagnetic fields while participants move in a magnetically shielded room. Head movements in previous OP-MEG studies have been up to 20 cm translation and ∼30° rotation in a sitting position. While this represents a step-change over stationary MEG systems, naturalistic head movement is likely to exceed these limits, particularly when participants are standing up. In this proof-of-concept study, we sought to push the movement limits of OP-MEG even further. Using a 90 channel (45-sensor) whole-head OP-MEG system and concurrent motion capture, we recorded auditory evoked fields while participants were: (i) sitting still, (ii) standing up and still, and (iii) standing up and making large natural head movements continuously throughout the recording - maximum translation 120 cm, maximum rotation 198°. Following pre-processing, movement artefacts were substantially reduced but not eliminated. However, upon utilisation of a beamformer, the M100 event-related field localised to primary auditory regions. Furthermore, the event-related fields from auditory cortex were remarkably consistent across the three conditions. These results suggest that a wide range of movement is possible with current OP-MEG systems. This in turn underscores the exciting potential of OP-MEG for recording neural activity during naturalistic paradigms that involve movement (e.g. navigation), and for scanning populations who are difficult to study with stationary MEG (e.g. young children).


Asunto(s)
Corteza Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Magnetoencefalografía/métodos , Posición de Pie , Adulto , Artefactos , Cabeza , Movimientos de la Cabeza , Humanos , Masculino , Prueba de Estudio Conceptual , Rotación
9.
Sci Rep ; 11(1): 17615, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475476

RESUMEN

Beamforming is one of the most commonly used source reconstruction methods for magneto- and electroencephalography (M/EEG). One underlying assumption, however, is that distant sources are uncorrelated and here we tested whether this is an appropriate model for the human hippocampal data. We revised the Empirical Bayesian Beamfomer (EBB) to accommodate specific a-priori correlated source models. We showed in simulation that we could use model evidence (as approximated by Free Energy) to distinguish between different correlated and uncorrelated source scenarios. Using group MEG data in which the participants performed a hippocampal-dependent task, we explored the possibility that the hippocampus or the cortex or both were correlated in their activity across hemispheres. We found that incorporating a correlated hippocampal source model significantly improved model evidence. Our findings help to explain why, up until now, the majority of MEG-reported hippocampal activity (typically making use of beamformers) has been estimated as unilateral.


Asunto(s)
Hipocampo/fisiología , Teorema de Bayes , Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Simulación por Computador , Electroencefalografía/métodos , Humanos , Magnetoencefalografía/métodos , Modelos Neurológicos , Procesamiento de Señales Asistido por Computador
10.
Neuroimage ; 244: 118484, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418526

RESUMEN

Here we propose that much of the magnetic interference observed when using optically pumped magnetometers for MEG experiments can be modeled as a spatially homogeneous magnetic field. We show that this approximation reduces sensor level variance and substantially improves statistical power. This model does not require knowledge of the underlying neuroanatomy nor the sensor positions. It only needs information about the sensor orientation. Due to the model's low rank there is little risk of removing substantial neural signal. However, we provide a framework to assess this risk for any sensor number, design or subject neuroanatomy. We find that the risk of unintentionally removing neural signal is reduced when multi-axis recordings are performed. We validated the method using a binaural auditory evoked response paradigm and demonstrated that removing the homogeneous magnetic field increases sensor level SNR by a factor of 3. Considering the model's simplicity and efficacy, we suggest that this homogeneous field correction can be a powerful preprocessing step for arrays of optically pumped magnetometers.


Asunto(s)
Campos Magnéticos , Magnetometría/métodos , Adulto , Cognición , Potenciales Evocados Auditivos , Ojo , Humanos , Conocimiento , Masculino , Neuroanatomía , Propiocepción , Proyectos de Investigación
11.
Sci Rep ; 10(1): 21609, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303793

RESUMEN

Several new technologies have emerged promising new Magnetoencephalography (MEG) systems in which the sensors can be placed close to the scalp. One such technology, Optically Pumped MEG (OP-MEG) allows for a scalp mounted system that provides measurements within millimetres of the scalp surface. A question that arises in developing on-scalp systems is: how many sensors are necessary to achieve adequate performance/spatial discrimination? There are many factors to consider in answering this question such as the signal to noise ratio (SNR), the locations and depths of the sources, density of spatial sampling, sensor gain errors (due to interference, subject movement, cross-talk, etc.) and, of course, the desired spatial discrimination. In this paper, we provide simulations which show the impact these factors have on designing sensor arrays for wearable MEG. While OP-MEG has the potential to provide high information content at dense spatial samplings, we find that adequate spatial discrimination of sources (< 1 cm) can be achieved with relatively few sensors (< 100) at coarse spatial samplings (~ 30 mm) at high SNR. After this point approximately 50 more sensors are required for every 1 mm improvement in spatial discrimination. Comparable discrimination for traditional cryogenic systems require more channels by these same metrics. We also show that sensor gain errors have the greatest impact on discrimination between deep sources at high SNR. Finally, we also examine the limitation that aliasing due to undersampling has on the effective SNR of on-scalp sensors.

12.
Neuroimage ; 217: 116880, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32376303

RESUMEN

With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies.


Asunto(s)
Dedos/inervación , Dedos/fisiología , Lateralidad Funcional/fisiología , Corteza Somatosensorial/fisiología , Adulto , Algoritmos , Atlas como Asunto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Tacto/fisiología , Vibración , Análisis de Ondículas , Adulto Joven
13.
Neuroimage ; 209: 116537, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935517

RESUMEN

Neural oscillations dominate electrophysiological measures of macroscopic brain activity and fluctuations in these rhythms offer an insightful window on cortical excitation, inhibition, and connectivity. However, in recent years the 'classical' picture of smoothly varying oscillations has been challenged by the idea that many 'oscillations' may actually be formed from the recurrence of punctate high-amplitude bursts in activity, whose spectral composition intersects the traditionally defined frequency ranges (e.g. alpha/beta band). This finding offers a new interpretation of measurable brain activity, however neither the methodological means to detect bursts, nor their link to other findings (e.g. connectivity) have been settled. Here, we use a new approach to detect bursts in magnetoencephalography (MEG) data. We show that a time-delay embedded Hidden Markov Model (HMM) can be used to delineate single-region bursts which are in agreement with existing techniques. However, unlike existing techniques, the HMM looks for specific spectral patterns in timecourse data. We characterise the distribution of burst duration, frequency of occurrence and amplitude across the cortex in resting state MEG data. During a motor task we show how the movement related beta decrease and post movement beta rebound are driven by changes in burst occurrence. Finally, we show that the beta band functional connectome can be derived using a simple measure of burst overlap, and that coincident bursts in separate regions correspond to a period of heightened coherence. In summary, this paper offers a new methodology for burst identification and connectivity analysis which will be important for future investigations of neural oscillations.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Conectoma/métodos , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Reconocimiento Visual de Modelos/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Front Neurosci ; 13: 797, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31427920

RESUMEN

Despite advances in the field of dynamic connectivity, fixed sliding window approaches for the detection of fluctuations in functional connectivity are still widely used. The use of conventional connectivity metrics in conjunction with a fixed sliding window comes with the arbitrariness of the chosen window lengths. In this paper we use multivariate autoregressive and neural mass models with a priori defined ground truths to systematically analyze the sensitivity of conventional metrics in combination with different window lengths to detect genuine fluctuations in connectivity for various underlying state durations. Metrics of interest are the coherence, imaginary coherence, phase lag index, phase locking value and the amplitude envelope correlation. We performed analysis for two nodes and at the network level. We demonstrate that these metrics show indeed higher variability for genuine temporal fluctuations in connectivity compared to a static connectivity state superimposed by noise. Overall, the error of the connectivity estimates themselves decreases for longer state durations (order of seconds), while correlations of the connectivity fluctuations with the ground truth was higher for longer state durations. In general, metrics, in combination with a sliding window, perform poorly for very short state durations. Increasing the SNR of the system only leads to a moderate improvement. In addition, at the network level, only longer window widths were sufficient to detect plausible resting state networks that matched the underlying ground truth, especially for the phase locking value, amplitude envelope correlation and coherence. The length of these longer window widths did not necessarily correspond to the underlying state durations. For short window widths resting state network connectivity patterns could not be retrieved. We conclude that fixed sliding window approaches for connectivity can detect modulations of connectivity, but mostly if the underlying dynamics operate on moderate to slow timescales. In practice, this can be a drawback, as state durations can vary significantly in empirical data.

15.
Neuroimage ; 200: 38-50, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31207339

RESUMEN

Fluctuations in functional interactions between brain regions typically occur at the millisecond time scale. Conventional connectivity metrics are not adequately time-resolved to detect such fast fluctuations in functional connectivity. At the same time, attempts to use conventional metrics in a time-resolved manner usually come with the selection of sliding windows of fixed arbitrary length. In the current work, we evaluated the use of high temporal resolution metrics of functional connectivity in conjunction with non-negative tensor factorisation to detect fast fluctuations in connectivity and temporally evolving subnetworks. To this end, we used the phase difference derivative, wavelet coherence, and we also introduced a new metric, the instantaneous amplitude correlation. In order to deal with the inherently noisy nature of magnetoencephalography data and large datasets, we make use of recurrence plots and we used pair-wise orthogonalisation to avoid spurious estimates of functional connectivity due to signal leakage. Firstly, metrics were evaluated in the context of dynamically coupled neural mass models in the presence and absence of delays and also compared to conventional static metrics with fixed sliding windows. Simulations showed that these high temporal resolution metrics outperformed conventional static connectivity metrics. Secondly, the sensitivity of the metrics to fluctuations in connectivity was analysed in post-movement beta rebound magnetoencephalography data, which showed time locked sensorimotor subnetworks that modulated with the post-movement beta rebound. Finally, sensitivity of the metrics was evaluated in resting-state magnetoencephalography, showing similar spatial patterns across metrics, thereby indicating the robustness of the current analysis. The current methods can be applied in cognitive experiments that involve fast modulations in connectivity in relation to cognition. In addition, these methods could also be used as input to temporal graph analysis to further characterise the rapid fluctuation in brain network topology.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma/métodos , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Adulto , Conjuntos de Datos como Asunto , Humanos
16.
Neuroimage ; 189: 329-340, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30639839

RESUMEN

The sensation of touch in the glabrous skin of the human hand is conveyed by thousands of fast-conducting mechanoreceptive afferents, which can be categorised into four distinct types. The spiking properties of these afferents in the periphery in response to varied tactile stimuli are well-characterised, but relatively little is known about the spatiotemporal properties of the neural representations of these different receptor types in the human cortex. Here, we use the novel methodological combination of single-unit intraneural microstimulation (INMS) with magnetoencephalography (MEG) to localise cortical representations of individual touch afferents in humans, by measuring the extracranial magnetic fields from neural currents. We found that by assessing the modulation of the beta (13-30 Hz) rhythm during single-unit INMS, significant changes in oscillatory amplitude occur in the contralateral primary somatosensory cortex within and across a group of fast adapting type I mechanoreceptive afferents, which corresponded well to the induced response from matched vibrotactile stimulation. Combining the spatiotemporal specificity of MEG with the selective single-unit stimulation of INMS enables the interrogation of the central representations of different aspects of tactile afferent signalling within the human cortices. The fundamental finding that single-unit INMS ERD responses are robust and consistent with natural somatosensory stimuli will permit us to more dynamically probe the central nervous system responses in humans, to address questions about the processing of touch from the different classes of mechanoreceptive afferents and the effects of varying the stimulus frequency and patterning.


Asunto(s)
Vías Aferentes/fisiología , Ritmo beta/fisiología , Magnetoencefalografía/métodos , Mecanorreceptores/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Anciano , Estimulación Eléctrica , Femenino , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Vibración , Adulto Joven
17.
Cereb Cortex ; 29(6): 2668-2681, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897408

RESUMEN

Event-related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain "activity". However, the precise nature of these effects remains unclear; in particular, whether such fluctuations reflect local dynamics, integration between regions, or both, is unknown. Here, using magnetoencephalography, we show that movement induced oscillatory modulation is associated with transient connectivity between sensorimotor regions. Further, in resting-state data, we demonstrate a significant association between oscillatory modulation and dynamic connectivity. A confound with such empirical measurements is that increased amplitude necessarily means increased signal-to-noise ratio (SNR): this means that the question of whether amplitude and connectivity are genuinely coupled, or whether increased connectivity is observed purely due to increased SNR is unanswered. Here, we counter this problem by analogy with computational models which show that, in the presence of global network coupling and local multistability, the link between oscillatory modulation and long-range connectivity is a natural consequence of neural networks. Our results provide evidence for the notion that connectivity is mediated by neural oscillations, and suggest that time-frequency spectrograms are not merely a description of local synchrony but also reflect fluctuations in long-range connectivity.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Adulto , Simulación por Computador , Femenino , Humanos , Magnetoencefalografía , Masculino , Desempeño Psicomotor/fisiología
18.
Neuroimage ; 186: 211-220, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30399418

RESUMEN

Functional networks obtained from magnetoencephalography (MEG) from different frequency bands show distinct spatial patterns. It remains to be elucidated how distinct spatial patterns in MEG networks emerge given a single underlying structural network. Recent work has suggested that the eigenmodes of the structural network might serve as a basis set for functional network patterns in the case of functional MRI. Here, we take this notion further in the context of frequency band specific MEG networks. We show that a selected set of eigenmodes of the structural network can predict different frequency band specific networks in the resting state, ranging from delta (1-4 Hz) to the high gamma band (40-70 Hz). These predictions outperform predictions based from surrogate data, suggesting a genuine relationship between eigenmodes of the structural network and frequency specific MEG networks. We then show that the relevant set of eigenmodes can be excited in a network of neural mass models using linear stability analysis only by including delays. Excitation of an eigenmode in this context refers to a dynamic instability of a network steady state to a spatial pattern with a corresponding coherent temporal oscillation. Simulations verify the results from linear stability analysis and suggest that theta, alpha and beta band networks emerge very near to the bifurcation. The delta and gamma bands in the resting state emerges further away from the bifurcation. These results show for the first time how delayed interactions can excite the relevant set of eigenmodes that give rise to frequency specific functional connectivity patterns.


Asunto(s)
Ondas Encefálicas , Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Magnetoencefalografía , Interpretación Estadística de Datos , Imagen de Difusión por Resonancia Magnética , Humanos , Modelos Neurológicos , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
19.
Neuroimage Clin ; 20: 228-235, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30090697

RESUMEN

The healthy brain is able to maintain a stable balance between bottom-up sensory processing and top-down cognitive control. The neurotransmitter acetylcholine plays a substantial role in this. Disruption of this balance could contribute to symptoms occurring in psychosis, including subtle disruption of motor control and aberrant appropriation of salience to external stimuli; however the pathological mechanisms are poorly understood. On account of the role beta oscillations play in mediating cognitive control, investigation of beta oscillations is potentially informative about such mechanisms. Here, we used magnetoencephalography to investigate the effect of the acetylcholinesterase-inhibitor, galantamine, on beta oscillations within the sensorimotor region during both a sensorimotor task and a relevance-modulation task in healthy participants, employing a double blind randomized placebo controlled cross-over design. In the galantamine condition, we found a significant reduction in the post-movement beta rebound in the case of executed movements and also in a planned but not executed movement. In the latter case, the effect was significantly greater following task-relevant compared with irrelevant stimuli. The results suggest that the action of galantamine reduces the influence of top-down cognitive processing relative to bottom-up perceptual processing in a manner resembling changes previously reported in schizophrenia.


Asunto(s)
Ritmo beta/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Galantamina/farmacología , Nootrópicos/farmacología , Adulto , Ritmo beta/fisiología , Encéfalo/fisiología , Cognición/fisiología , Método Doble Ciego , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Femenino , Galantamina/uso terapéutico , Humanos , Masculino , Nootrópicos/uso terapéutico , Estimulación Luminosa/métodos , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Adulto Joven
20.
Neuroimage ; 180(Pt B): 559-576, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28988134

RESUMEN

For several years it has been argued that neural synchronisation is crucial for cognition. The idea that synchronised temporal patterns between different neural groups carries information above and beyond the isolated activity of these groups has inspired a shift in focus in the field of functional neuroimaging. Specifically, investigation into the activation elicited within certain regions by some stimulus or task has, in part, given way to analysis of patterns of co-activation or functional connectivity between distal regions. Recently, the functional connectivity community has been looking beyond the assumptions of stationarity that earlier work was based on, and has introduced methods to incorporate temporal dynamics into the analysis of connectivity. In particular, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)), which provides direct measurement of whole-brain activity and rich temporal information, offers an exceptional window into such (potentially fast) brain dynamics. In this review, we discuss challenges, solutions, and a collection of analysis tools that have been developed in recent years to facilitate the investigation of dynamic functional connectivity using these imaging modalities. Further, we discuss the applications of these approaches in the study of cognition and neuropsychiatric disorders. Finally, we review some existing developments that, by using realistic computational models, pursue a deeper understanding of the underlying causes of non-stationary connectivity.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Simulación por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...