Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 78(23): 7519-7536, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34657170

RESUMEN

CCCTC-binding factor (CTCF) plays fundamental roles in transcriptional regulation and chromatin architecture maintenance. CTCF is also a tumour suppressor frequently mutated in cancer, however, the structural and functional impact of mutations have not been examined. We performed molecular and structural characterisation of five cancer-specific CTCF missense zinc finger (ZF) mutations occurring within key intra- and inter-ZF residues. Functional characterisation of CTCF ZF mutations revealed a complete (L309P, R339W, R377H) or intermediate (R339Q) abrogation as well as an enhancement (G420D) of the anti-proliferative effects of CTCF. DNA binding at select sites was disrupted and transcriptional regulatory activities abrogated. Molecular docking and molecular dynamics confirmed that mutations in residues specifically contacting DNA bases or backbone exhibited loss of DNA binding. However, R339Q and G420D were stabilised by the formation of new primary DNA bonds, contributing to gain-of-function. Our data confirm that a spectrum of loss-, change- and gain-of-function impacts on CTCF zinc fingers are observed in cell growth regulation and gene regulatory activities. Hence, diverse cellular phenotypes of mutant CTCF are clearly explained by examining structure-function relationships.


Asunto(s)
Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias/patología , Fenotipo , Dedos de Zinc , Apoptosis , Factor de Unión a CCCTC/genética , Proliferación Celular , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Relación Estructura-Actividad , Células Tumorales Cultivadas
2.
J Hematol Oncol ; 10(1): 75, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28351373

RESUMEN

BACKGROUND: ELF2 (E74-like factor 2) also known as NERF (new Ets-related factor), a member of the Ets family of transcription factors, regulates genes important in B and T cell development, cell cycle progression, and angiogenesis. Conserved ELF2 isoforms, ELF2A, and ELF2B, arising from alternative promoter usage can exert opposing effects on target gene expression. ELF2A activates, whilst ELF2B represses, gene expression, and the balance of expression between these isoforms may be important in maintaining normal cellular function. METHODS: We compared the function of ELF2 isoforms ELF2A and ELF2B with other ELF subfamily proteins ELF1 and ELF4 in primary and cancer cell lines using proliferation, colony-forming, cell cycle, and apoptosis assays. We further examined the role of ELF2 isoforms in haemopoietic development using a Rag1 -/-murine bone marrow reconstitution model. RESULTS: ELF2B overexpression significantly reduced cell proliferation and clonogenic capacity, minimally disrupted cell cycle kinetics, and induced apoptosis. In contrast, ELF2A overexpression only marginally reduced clonogenic capacity with little effect on proliferation, cell cycle progression, or apoptosis. Deletion of the N-terminal 19 amino acids unique to ELF2B abrogated the antiproliferative and proapoptotic functions of ELF2B thereby confirming its crucial role. Mice expressing Elf2a or Elf2b in haemopoietic cells variously displayed perturbations in the pre-B cell stage and multiple stages of T cell development. Mature B cells, T cells, and myeloid cells in steady state were unaffected, suggesting that the main role of ELF2 is restricted to the early development of B and T cells and that compensatory mechanisms exist. No differences in B and T cell development were observed between ELF2 isoforms. CONCLUSIONS: We conclude that ELF2 isoforms are important regulators of cellular proliferation, cell cycle progression, and apoptosis. In respect to this, ELF2B acts in a dominant negative fashion compared to ELF2A and as a putative tumour suppressor gene. Given that these cellular processes are critical during haemopoiesis, we propose that the regulatory interplay between ELF2 isoforms contributes substantially to early B and T cell development.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/farmacología , Linfopoyesis/efectos de los fármacos , Factores de Transcripción/farmacología , Animales , Ciclo Celular , Línea Celular Tumoral , Regulación de la Expresión Génica , Ratones , Células Precursoras de Linfocitos B/efectos de los fármacos , Isoformas de Proteínas , Linfocitos T/efectos de los fármacos
3.
J Exp Med ; 213(8): 1589-608, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27401342

RESUMEN

Naive CD4(+) T cells differentiate into specific effector subsets-Th1, Th2, Th17, and T follicular helper (Tfh)-that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4(+) T cell differentiation in vitro. IL12Rß1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10-secreting cells. IL12Rß1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4(+) T cell effector function in the settings of infection, vaccination, or immune dysregulation.


Asunto(s)
Diferenciación Celular/inmunología , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Diferenciación Celular/genética , Femenino , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Masculino , Mutación , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Células TH1/citología , Células Th17/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...