Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(6): e15989, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538007

RESUMEN

Cardiac fibroblasts (CFs) are an attractive target for reducing pathological cardiac remodeling, and understanding the underlying mechanisms of these processes is the key to develop successful therapies for treating the pressure-overloaded heart. CF-specific knockout (KO) mouse lines with a Cre recombinase under the control of human TCF21 (hTCF21) promoter and/or an adeno-associated virus serotype 9 (AAV9)-hTCF21 system provide a powerful tool for understanding CF biology in vivo. Although a variety of rat disease models are vital for the research of cardiac fibrosis similar to mouse models, there are few rat models that employ cardiac cell-specific conditional gene modification, which has hindered the development and translational relevance of cardiac disease models. In addition, to date, there are no reports of gene manipulation specifically in rat CFs in vivo. Here, we report a simplified CF-specific rat transgenic model using an AAV9-hTCF21 system that achieved a CF-specific expression of transgene in adult rat hearts. Moreover, we successfully applied this approach to specifically manipulate mitochondrial morphology in quiescent CFs. In summary, this model will allow us to develop fast and simple rat CF-specific transgenic models for studying cardiovascular diseases in vivo.


Asunto(s)
Cardiomiopatías , Cardiopatías , Ratones , Animales , Ratas , Humanos , Miocitos Cardíacos/metabolismo , Dependovirus/genética , Cardiopatías/patología , Ratones Noqueados , Fibroblastos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577584

RESUMEN

MCU is widely recognized as a responsible gene for encoding a pore-forming subunit of highly mitochondrial-specific and Ca 2+ -selective channel, mitochondrial Ca 2+ uniporter complex (mtCUC). Here, we report a novel short variant derived from the MCU gene (termed MCU-S) which lacks mitochondria-targeted sequence and forms a Ca 2+ - permeable channel outside of mitochondria. MCU-S was ubiquitously expressed in all cell-types/tissues, with particularly high expression in human platelets. MCU-S formed Ca 2+ channels at the plasma membrane, which exhibited similar channel properties to those observed in mtCUC. MCU-S channels at the plasma membrane served as an additional Ca 2+ influx pathway for platelet activation. Our finding is completely distinct from the originally reported MCU gene function and provides novel insights into the molecular basis of MCU variant-dependent cellular Ca 2+ handling.

3.
JACC Basic Transl Sci ; 8(3): 239-254, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034280

RESUMEN

Intermittent fasting (IF) extends life span via pleotropic mechanisms, but one important molecular mediator is adenosine monophosphate-activated protein kinase (AMPK). AMPK enhances lipid metabolism and modulates microtubule dynamics. Dysregulation of these molecular pathways causes right ventricular (RV) failure in patients with pulmonary arterial hypertension. In rodent pulmonary arterial hypertension, IF activates RV AMPK, which restores mitochondrial and peroxisomal morphology and restructures mitochondrial and peroxisomal lipid metabolism protein regulation. In addition, IF increases electron transport chain protein abundance and activity in the right ventricle. Echocardiographic and hemodynamic measures of RV function are positively associated with fatty acid oxidation and electron transport chain protein levels. IF also combats heightened microtubule density, which normalizes transverse tubule structure.

5.
JCI Insight ; 6(12)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33974567

RESUMEN

Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.


Asunto(s)
Ventrículos Cardíacos , Hipertensión Pulmonar , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Femenino , Fibrosis , Células HEK293 , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Masculino , Ratas , Ratas Sprague-Dawley , Función Ventricular Derecha/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
6.
Int J Cardiol ; 332: 70-77, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675888

RESUMEN

BACKGROUND: Premature atrial contractions (PACs) are associated with increased risk of atrial fibrillation (AF) and ischemic stroke. Although lifestyle and risk factor modification reduces AF incidence, their relationship to PACs frequency is unclear. We assessed the association of Life's Simple 7 (LS7) and individual LS7 factors in midlife with PACs frequency in late life in the Atherosclerosis Risk in Communities (ARIC) Study. METHODS: We followed 1924 participants from ARIC clinic Visit 3 (1993--95) to Visit 6 (2016-17) when a 2-week continuous heart rhythm monitor (Zio®XT Patch) was applied. LS7 factors were assessed at Visit 3 and a composite score was calculated. PACs frequency was categorized as minimal (<0.1%), occasional (≥0.1%-5%) and frequent (>5%). Logistic regression was used to evaluate the association of LS7 score and individual factors with PACs frequency. RESULTS: Each 1-point LS7 score increase was associated with lower odds of frequent PACs vs. no PACs (OR [95% CI]: 0.87 [0.78, 0.98]) and frequent PACs vs. occasional PACs (OR [95% CI]: 0.88 [0.79, 0.98]). Of the individual LS7 factors, compared with ideal physical activity, poor physical activity was associated with 81% higher odds of frequent PACs vs. no PACs. Compared with ideal BMI, poor BMI was associated with 41% higher odds of occasional PACs vs. no PACs. CONCLUSION: Lifestyle risk factors, particularly physical activity and BMI, are associated with higher odds of PACs frequency. More research is needed to determine whether modifying these risk factors in midlife would prevent frequent PACs, and thereby prevent AF and stroke in older age.


Asunto(s)
Aterosclerosis , Complejos Atriales Prematuros , Anciano , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Complejos Atriales Prematuros/diagnóstico , Complejos Atriales Prematuros/epidemiología , Ejercicio Físico , Humanos , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo
7.
Front Physiol ; 10: 1277, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636573

RESUMEN

AIM: Aging in humans is associated with a 10-40-fold greater incidence of sudden cardiac death from malignant tachyarrhythmia. We have reported that thiol oxidation of ryanodine receptors (RyR2s) by mitochondria-derived reactive oxygen species (mito-ROS) contributes to defective Ca2+ homeostasis in cardiomyocytes (CMs) from aging rabbit hearts. However, mechanisms responsible for the increase in mito-ROS in the aging heart remain poorly understood. Here we test the hypothesis that age-associated decrease in autophagy is a major contributor to enhanced mito-ROS production and thereby pro-arrhythmic disturbances in Ca2+ homeostasis. METHODS AND RESULTS: Ventricular tissues from aged rabbits displayed significant downregulation of proteins involved in mitochondrial autophagy compared with tissues from young controls. Blocking autophagy with chloroquine increased total ROS production in primary rabbit CMs and mito-ROS production in HL-1 CMs. Furthermore, chloroquine treatment of HL-1 cells depolarized mitochondrial membrane potential (Δψm) to 50% that of controls. Blocking autophagy significantly increased oxidation of RyR2, resulting in enhanced propensity to pro-arrhythmic spontaneous Ca2+ release under ß-adrenergic stimulation. Aberrant Ca2+ release was abolished by treatment with the mito-ROS scavenger mito-TEMPO. Importantly, the autophagy enhancer Torin1 and ATG7 overexpression reduced the rate of mito-ROS production and restored both Δψm and defective Ca2+ handling in CMs derived from aged rabbit hearts. CONCLUSION: Decreased autophagy is a major cause of increased mito-ROS production in the aging heart. Our data suggest that promoting autophagy may reduce pathologic mito-ROS during normal aging and reduce pro-arrhythmic spontaneous Ca2+ release via oxidized RyR2s.

9.
J Mol Cell Cardiol ; 129: 314-325, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30898664

RESUMEN

Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab GTPase proteins, a key protein family for the regulation of protein trafficking. Rab-GTPases have been shown to be involved in the control of membrane expression level of ion channels, including one of the major cardiac repolarizing channels, IKs. Decreased IKs function has been observed in a number of disease states and associated with increased propensity for arrhythmias, but the mechanism underlying IKs decrease remains elusive. Ca2+-dependent PKC isoforms (cPKC) are chronically activated in variety of human diseases and have been suggested to acutely regulate IKs function. We hypothesize that chronic cPKC stimulation leads to Rab-mediated decrease in IKs membrane expression, and that can be prevented by statins. In this study we show that chronic cPKC stimulation caused a dramatic Rab5 GTPase-dependent decrease in plasma membrane localization of the IKs pore forming subunit KCNQ1, reducing IKs function. Our data indicates fluvastatin inhibition of Rab5 restores channel localization and function after cPKC-mediated channel internalization. Our results indicate a novel statin anti-arrhythmic effect that would be expected to inhibit pathological electrical remodeling in a number of disease states associated with high cPKC activation. Because Rab-GTPases are important regulators of membrane trafficking they may underlie other statin pleiotropic effects.


Asunto(s)
Calcio/metabolismo , Endocitosis , Fluvastatina/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Proteína Quinasa C/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas
10.
Am J Physiol Cell Physiol ; 316(5): C583-C604, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30758993

RESUMEN

Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.


Asunto(s)
Cardiopatías/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Cardiopatías/genética , Humanos , Proteínas Mitocondriales/genética
11.
Arch Biochem Biophys ; 663: 276-287, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30684463

RESUMEN

Recent discoveries of the molecular identity of mitochondrial Ca2+ influx/efflux mechanisms have placed mitochondrial Ca2+ transport at center stage in views of cellular regulation in various cell-types/tissues. Indeed, mitochondria in cardiac muscles also possess the molecular components for efficient uptake and extraction of Ca2+. Over the last several years, multiple groups have taken advantage of newly available molecular information about these proteins and applied genetic tools to delineate the precise mechanisms for mitochondrial Ca2+ handling in cardiomyocytes and its contribution to excitation-contraction/metabolism coupling in the heart. Though mitochondrial Ca2+ has been proposed as one of the most crucial secondary messengers in controlling a cardiomyocyte's life and death, the detailed mechanisms of how mitochondrial Ca2+ regulates physiological mitochondrial and cellular functions in cardiac muscles, and how disorders of this mechanism lead to cardiac diseases remain unclear. In this review, we summarize the current controversies and discrepancies regarding cardiac mitochondrial Ca2+ signaling that remain in the field to provide a platform for future discussions and experiments to help close this gap.


Asunto(s)
Calcio/metabolismo , Homeostasis , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Adenosina Trifosfato/biosíntesis , Señalización del Calcio , Humanos , Transporte Iónico , Miocitos Cardíacos/metabolismo
12.
Antioxidants (Basel) ; 7(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567380

RESUMEN

Abnormal mitochondrial morphology, especially fragmented mitochondria, and mitochondrial dysfunction are hallmarks of a variety of human diseases including heart failure (HF). Although emerging evidence suggests a link between mitochondrial fragmentation and cardiac dysfunction, it is still not well described which cardiac signaling pathway regulates mitochondrial morphology and function under pathophysiological conditions such as HF. Mitochondria change their shape and location via the activity of mitochondrial fission and fusion proteins. This mechanism is suggested as an important modulator for mitochondrial and cellular functions including bioenergetics, reactive oxygen species (ROS) generation, spatiotemporal dynamics of Ca2+ signaling, cell growth, and death in the mammalian cell- and tissue-specific manners. Recent reports show that a mitochondrial fission protein, dynamin-like/related protein 1 (DLP1/Drp1), is post-translationally modified via cell signaling pathways, which control its subcellular localization, stability, and activity in cardiomyocytes/heart. In this review, we summarize the possible molecular mechanisms for causing post-translational modifications (PTMs) of DLP1/Drp1 in cardiomyocytes, and further discuss how these PTMs of DLP1/Drp1 mediate abnormal mitochondrial morphology and mitochondrial dysfunction under adrenergic signaling activation that contributes to the development and progression of HF.

13.
J Physiol ; 596(5): 827-855, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29313986

RESUMEN

KEY POINTS: Abnormal mitochondrial morphology and function in cardiomyocytes are frequently observed under persistent Gq protein-coupled receptor (Gq PCR) stimulation. Cardiac signalling mechanisms for regulating mitochondrial morphology and function under pathophysiological conditions in the heart are still poorly understood. We demonstrate that a downstream kinase of Gq PCR, protein kinase D (PKD) induces mitochondrial fragmentation via phosphorylation of dynamin-like protein 1 (DLP1), a mitochondrial fission protein. The fragmented mitochondria enhance reactive oxygen species generation and permeability transition pore opening in mitochondria, which initiate apoptotic signalling activation. This study identifies a novel PKD-specific substrate in cardiac mitochondria and uncovers the role of PKD on cardiac mitochondria, with special emphasis on the molecular mechanism(s) underlying mitochondrial injury with abnormal mitochondrial morphology under persistent Gq PCR stimulation. These findings provide new insights into the molecular basis of cardiac mitochondrial physiology and pathophysiology, linking Gq PCR signalling with the regulation of mitochondrial morphology and function. ABSTRACT: Regulation of mitochondrial morphology is crucial for the maintenance of physiological functions in many cell types including cardiomyocytes. Small and fragmented mitochondria are frequently observed in pathological conditions, but it is still unclear which cardiac signalling pathway is responsible for regulating the abnormal mitochondrial morphology in cardiomyocytes. Here we demonstrate that a downstream kinase of Gq protein-coupled receptor (Gq PCR) signalling, protein kinase D (PKD), mediates pathophysiological modifications in mitochondrial morphology and function, which consequently contribute to the activation of apoptotic signalling. We show that Gq PCR stimulation induced by α1 -adrenergic stimulation mediates mitochondrial fragmentation in a fission- and PKD-dependent manner in H9c2 cardiac myoblasts and rat neonatal cardiomyocytes. Upon Gq PCR stimulation, PKD translocates from the cytoplasm to the outer mitochondrial membrane (OMM) and phosphorylates a mitochondrial fission protein, dynamin-like protein 1 (DLP1), at S637. PKD-dependent phosphorylation of DLP1 initiates DLP1 association with the OMM, which then enhances mitochondrial fragmentation, mitochondrial superoxide generation, mitochondrial permeability transition pore opening and apoptotic signalling. Finally, we demonstrate that DLP1 phosphorylation at S637 by PKD occurs in vivo using ventricular tissues from transgenic mice with cardiac-specific overexpression of constitutively active Gαq protein. In conclusion, Gq PCR-PKD signalling induces mitochondrial fragmentation and dysfunction via PKD-dependent DLP1 phosphorylation in cardiomyocytes. This study is the first to identify a novel PKD-specific substrate, DLP1 in mitochondria, as well as the functional role of PKD in cardiac mitochondria. Elucidation of these molecular mechanisms by which PKD-dependent enhanced fission mediates cardiac mitochondrial injury will provide novel insight into the relationship among mitochondrial form, function and Gq PCR signalling.


Asunto(s)
Dinaminas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales , Miocitos Cardíacos/patología , Proteína Quinasa C/metabolismo , Animales , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal
14.
Front Physiol ; 9: 1831, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622478

RESUMEN

In a physiological setting, mitochondria increase oxidative phosphorylation during periods of stress to meet increased metabolic demand. This in part is mediated via enhanced mitochondrial Ca2+ uptake, an important regulator of cellular ATP homeostasis. In a pathophysiological setting pharmacological modulation of mitochondrial Ca2+ uptake or retention has been suggested as a therapeutic strategy to improve metabolic homeostasis or attenuate Ca2+-dependent arrhythmias in cardiac disease states. To explore the consequences of mitochondrial Ca2+ accumulation, we tested the effects of kaempferol, an activator of mitochondrial Ca2+ uniporter (MCU), CGP-37157, an inhibitor of mitochondrial Na+/Ca2+ exchanger, and MCU inhibitor Ru360 in rat ventricular myocytes (VMs) from control rats and rats with hypertrophy induced by thoracic aortic banding (TAB). In periodically paced VMs under ß-adrenergic stimulation, treatment with kaempferol (10 µmol/L) or CGP-37157 (1 µmol/L) enhanced mitochondrial Ca2+ accumulation monitored by mitochondrial-targeted Ca2+ biosensor mtRCamp1h. Experiments with mitochondrial membrane potential-sensitive dye TMRM revealed this was accompanied by depolarization of the mitochondrial matrix. Using redox-sensitive OMM-HyPer and ERroGFP_iE biosensors, we found treatment with kaempferol or CGP-37157 increased the levels of reactive oxygen species (ROS) in mitochondria and the sarcoplasmic reticulum (SR), respectively. Confocal Ca2+ imaging showed that accelerated Ca2+ accumulation reduced Ca2+ transient amplitude and promoted generation of spontaneous Ca2+ waves in VMs paced under ISO, suggestive of abnormally high activity of the SR Ca2+ release channel ryanodine receptor (RyR). Western blot analyses showed increased RyR oxidation after treatment with kaempferol or CGP-37157 vs. controls. Furthermore, in freshly isolated TAB VMs, confocal Ca2+ imaging demonstrated that enhancement of mitochondrial Ca2+ accumulation further perturbed global Ca2+ handling, increasing the number of cells exhibiting spontaneous Ca2+ waves, shortening RyR refractoriness and decreasing SR Ca2+ content. In ex vivo optically mapped TAB hearts, kaempferol exacerbated proarrhythmic phenotype. On the contrary, incubation of cells with MCU inhibitor Ru360 (2 µmol/L, 30 min) normalized RyR oxidation state, improved intracellular Ca2+ homeostasis and reduced triggered activity in ex vivo TAB hearts. These findings suggest facilitation of mitochondrial Ca2+ uptake in cardiac disease can exacerbate proarrhythmic disturbances in Ca2+ homeostasis via ROS and enhanced activity of oxidized RyRs, while strategies to reduce mitochondrial Ca2+ accumulation can be protective.

15.
Am J Respir Cell Mol Biol ; 58(5): 658-667, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29100477

RESUMEN

Hyperproliferative endothelial cells (ECs) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). Anoctamin (Ano)-1, a calcium-activated chloride channel, can regulate cell proliferation and cell cycle in multiple cell types. However, the expression and function of Ano1 in the pulmonary endothelium is unknown. We examined whether Ano1 was expressed in pulmonary ECs and if altering Ano1 activity would affect EC survival. Expression and localization of Ano1 in rat lung microvascular ECs (RLMVECs) was assessed using immunoblot, immunofluorescence, and subcellular fractionation. Cell counts, flow cytometry, and caspase-3 activity were used to assess changes in cell number and apoptosis in response to the small molecule Ano1 activator, Eact. Changes in mitochondrial membrane potential and mitochondrial reactive oxygen species (mtROS) were assessed using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide (mitochondrial membrane potential dye) and mitochondrial ROS dye, respectively. Ano1 is expressed in RLMVECs and is enriched in the mitochondria. Activation of Ano1 with Eact reduced RLMVEC counts through increased apoptosis. Ano1 knockdown blocked the effects of Eact. Ano1 activation increased mtROS, reduced mitochondrial membrane potential, increased p38 phosphorylation, and induced release of apoptosis-inducing factor. mtROS inhibition attenuated Eact-mediated p38 phosphorylation. Pulmonary artery ECs isolated from patients with idiopathic PAH (IPAH) had higher expression of Ano1 and increased cell counts compared with control subjects. Eact treatment reduced cell counts in IPAH cells, which was associated with increased apoptosis. In summary, Ano1 is expressed in lung EC mitochondria. Activation of Ano1 promotes apoptosis of pulmonary ECs and human IPAH-pulmonary artery ECs, likely via increased mtROS and p38 phosphorylation, leading to apoptosis.


Asunto(s)
Anoctamina-1/agonistas , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Pulmón/irrigación sanguínea , Transducción de Señal/efectos de los fármacos , Tiazoles/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Anoctamina-1/metabolismo , Estudios de Casos y Controles , Hipoxia de la Célula , Células Cultivadas , Células Endoteliales/enzimología , Células Endoteliales/patología , Hipertensión Pulmonar Primaria Familiar/enzimología , Hipertensión Pulmonar Primaria Familiar/patología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Proteínas de Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
16.
Handb Exp Pharmacol ; 240: 129-156, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28194521

RESUMEN

Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca2+ uniporter complex.


Asunto(s)
Canales de Calcio/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/efectos de los fármacos , Metabolismo Energético , Homeostasis , Humanos , Mitocondrias/metabolismo
17.
Data Brief ; 7: 730-4, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27054186

RESUMEN

Content of particular proteins indicating cellular injury due to apoptosis and necrosis has been investigated in ischemic/reperfused (IR) hearts and ischemic/reperfused hearts treated with CaMKII inhibitor and/or AT1 receptor inhibitor. This data article provides information in support of the original research article "Oxidative activation of CaMKIIδ in acute myocardial ischemia/reperfusion injury: a role of angiotensin AT1 receptor-NOX2 signaling axis" [1].

18.
Am J Physiol Cell Physiol ; 311(1): C67-80, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122161

RESUMEN

Mitochondrial Ca(2+) homeostasis, the Ca(2+) influx-efflux balance, is responsible for the control of numerous cellular functions, including energy metabolism, generation of reactive oxygen species, spatiotemporal dynamics of Ca(2+) signaling, and cell growth and death. Recent discovery of the molecular identity of the mitochondrial Ca(2+) uniporter (MCU) provides new possibilities for application of genetic approaches to study the mitochondrial Ca(2+) influx mechanism in various cell types and tissues. In addition, the subsequent discovery of various auxiliary subunits associated with MCU suggests that mitochondrial Ca(2+) uptake is not solely regulated by a single protein (MCU), but likely by a macromolecular protein complex, referred to as the MCU-protein complex (mtCUC). Moreover, recent reports have shown the potential role of MCU posttranslational modifications in the regulation of mitochondrial Ca(2+) uptake through mtCUC. These observations indicate that mtCUCs form a local signaling complex at the inner mitochondrial membrane that could significantly regulate mitochondrial Ca(2+) handling, as well as numerous mitochondrial and cellular functions. In this review we discuss the current literature on mitochondrial Ca(2+) uptake mechanisms, with a particular focus on the structure and function of mtCUC, as well as its regulation by signal transduction pathways, highlighting current controversies and discrepancies.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Homeostasis , Humanos , Activación del Canal Iónico , Fosforilación , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Procesamiento Postranscripcional del ARN , Relación Estructura-Actividad , Transcripción Genética
19.
Eur J Pharmacol ; 771: 114-22, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26694801

RESUMEN

During ischemia/reperfusion (IR), increased activation of angiotensin AT1 receptors recruits NADPH oxidase 2 (NOX2) which contributes to oxidative stress. It is unknown whether this stimulus can induce oxidative activation of Ca(2+)/calmodulin-dependent protein kinase IIδ (CaMKIIδ) leading into the aggravation of cardiac function and whether these effects can be prevented by angiotensin AT1 receptors blockade. Losartan, a selective AT1 blocker, was used. Its effects were compared with effects of KN-93, an inhibitor of CaMKIIδ. Global IR was induced in Langendorff-perfused rat hearts. Protein expression was evaluated by immunoblotting and lipoperoxidation was measured by TBARS assay. Losartan improved LVDP recovery by 25%; however, it did not reduce reperfusion arrhythmias. Oxidized CaMKIIδ (oxCaMKIIδ) was downregulated at the end of reperfusion compared to before ischemia and losartan did not change these levels. Phosphorylation of CaMKIIδ mirrored the pattern of changes in oxCaMKIIδ levels. Losartan did not prevent the higher lipoperoxidation due to IR and did not influence NOX2 expression. Inhibition of CaMKII ameliorated cardiac IR injury; however, this was not accompanied with changes in the levels of either active form of CaMKIIδ in comparison to the angiotensin AT1 receptor blockade. In spite of no changes of oxCaMKIIδ, increased cardiac recovery of either therapy was abolished when combined together. This study showed that oxidative activation of CaMKIIδ is not elevated at the end of R phase. NOX2-oxCAMKIIδ signaling is unlikely to be involved in cardioprotective action of angiotensin AT1 receptor blockade which is partially abolished by concomitant CaMKII inhibition.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Daño por Reperfusión Miocárdica/enzimología , NADPH Oxidasas/efectos de los fármacos , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Bencilaminas/farmacología , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Regulación hacia Abajo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Losartán/farmacología , Masculino , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas , Ratas Wistar , Sulfonamidas/farmacología
20.
Biochem Biophys Res Commun ; 465(3): 464-70, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26277396

RESUMEN

Protein kinase C (PKC) plays key roles in the regulation of signal transduction and cellular function in various cell types. At least ten PKC isoforms have been identified and intracellular localization and trafficking of these individual isoforms are important for regulation of enzyme activity and substrate specificity. PKC can be activated downstream of Gq-protein coupled receptor (GqPCR) signaling and translocate to various cellular compartments including plasma membrane (PM). Recent reports suggested that different types of GqPCRs would activate different PKC isoforms (classic, novel and atypical PKCs) with different trafficking patterns. However, the knowledge of isoform-specific activation of PKC by each GqPCR is limited. α1-Adrenoceptor (α1-AR) is one of the GqPCRs highly expressed in the cardiovascular system. In this study, we examined the isoform-specific dynamic translocation of PKC in living HEK293T cells by α1-AR stimulation (α1-ARS). Rat PKCα, ßI, ßII, δ, ε and ζ fused with GFP at C-term were co-transfected with human α1A-AR into HEK293T cells. The isoform-specific dynamic translocation of PKC in living HEK293T cells by α1-ARS using phenylephrine was measured by confocal microscopy. Before stimulation, GFP-PKCs were localized at cytosolic region. α1-ARS strongly and rapidly translocated a classical PKC (cPKC), PKCα, (<30 s) to PM, with PKCα returning diffusively into the cytosol within 5 min. α1-ARS rapidly translocated other cPKCs, PKCßI and PKCßII, to the PM (<30 s), with sustained membrane localization. One novel PKC (nPKC), PKCε, but not another nPKC, PKCδ, was translocated by α1-AR stimulation to the PM (<30 s) and its membrane localization was also sustained. Finally, α1-AR stimulation did not cause a diacylglycerol-insensitive atypical PKC, PKCζ translocation. Our data suggest that PKCα, ß and ε activation may underlie physiological and pathophysiological responses of α1-AR signaling for the phosphorylation of membrane-associated substrates including ion-channel and transporter proteins in the cardiovascular system.


Asunto(s)
Membrana Celular/metabolismo , Proteína Quinasa C/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transducción de Señal/fisiología , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...